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Preface

This is a documentation for the version 4.0 of COCO (CCSR Ocean Component Model), an ocean general
circulation model (OGCM) developed at Center for Climate System Research. The current version of
COCO is based on the primitive equations under the hydrostatic and Boussinesq approximations with
explicit free surface, and is formulated on the generalized curvilinear horizontal coordinate and (basically)
the geopotential height vertical coordinate. COCO also constitutes an ocean component of MIROC, a
coupled general circulation model developed at CCSR.

The author takes full responsibility for formulation, discretization, and coding of the current version,
although its development owes a great deal to current and former members of the CCSR ocean modeling
group. Special thanks are due to Nobuo Suginohara (current director of Institute of Observational Research
for Global Change, Japan Agency for Marine-Earth Science and Technology), who led the CCSR ocean
modeling group in 1990’s and had started developing a prototype of COCO in 1970’s; Yasuhiro Yamanaka
(currently at Hokkaido University), who established a basis for discretization and coding strategy of COCO
and also established a basis for World Ocean simulation in the CCSR ocean modeling group; and Hideyuki
Nakano (currently at Meteorological Research Institute of Japan Meteorological Agency), who devised the
bottom boundary layer parameterization used in COCO and significantly contributed to develop a code
for distributed memory systems using MPI (Message-Passing Interface). Two of the current members,
Akira Oka and Yoshiki Komuro, kindly spared time to proofread the manuscript, and their efforts in the
model development over several years are also appreciated. The model development is also supported by
collaborating partners outside CCSR, and the contribution made by Tatsuo Suzuki (Frontier Research Center
for Global Change, Japan Agency for Marine-Earth Science and Technology) is outstanding in adapting the
model to eddy-resolving resolution and coupled modeling.

Some of the description herein may seem verbose to some readers, but such verbosity is mostly intentional.
COCO is developed at a university, which means that it is not only a research tool but also intended to be
an educational tool for students, even of undergraduate level. I hope this documentation to serve as good
learning material for those who are inexperienced in numerical modeling of the ocean.

Hiro Hasumi
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Chapter 1

Model Formulation

1.1 Basic Equations

The basic equations for COCO are the primitive equations for the ocean on a sphere, where the Boussinesq
and hydrostatic approximations are applied. Several more approximations are employed for usual general
circulation models of the ocean and atmosphere. See, for example, Peixoto [1991 ] for detail. The equations
are formulated on the generalized curvilinear coordinate in horizontal, and on a hybrid of the geopotential
height and normalized geopotential height in vertical. The normalized vertical coordinate is employed to
avoid outcropping of surface layers, and used between the free surface and a fixed geopotential depth in the
upper ocean (∼ 50 m in most applications).

The coordinates are denoted by t for time, x and y for the two horizontal directions, z for the geopotential
height (measured upward from the mean sea level), and σ for the normalized geopotential height (1 for the
free surface and 0 for a fixed depth above which this coordinate system is applied). With u, v, and w for
x, y, and z direction velocity components, respectively, P for pressure, T for potential temperature, S for
salinity, and ρ for density, the equations under the z vertical coordinate are written as:

∂u

∂t
+

1
hxhy

[
∂

∂x
(hyuu) +

∂

∂y
(hxvu)

]
+

∂

∂z
(wu) + hxyuv − hyxvv − fv = − 1

ρ0hx

∂P

∂x
+ Vu, (1.1)

∂v

∂t
+

1
hxhy

[
∂

∂x
(hyuv) +

∂

∂y
(hxvv)

]
+

∂

∂z
(wv) + hyxuv − hxyuu+ fu = − 1

ρ0hy

∂P

∂y
+ Vv, (1.2)

0 = −∂P
∂z

− ρg, (1.3)

1
hxhy

[
∂

∂x
(hyu) +

∂

∂y
(hxv)

]
+
∂w

∂z
= 0, (1.4)

∂T

∂t
+

1
hxhy

[
∂

∂x
(hyuT ) +

∂

∂y
(hxvT )

]
+

∂

∂z
(wT ) = DT , (1.5)

∂S

∂t
+

1
hxhy

[
∂

∂x
(hyuS) +

∂

∂y
(hxvS)

]
+

∂

∂z
(wS) = DS , (1.6)

ρ = ρ(T, S, P ), (1.7)

where f is the Coriolis parameter (= 2Ω sinϕ, where Ω is the angular velocity of the earth’s rotation and ϕ
is latitude), g is the gravitational acceleration, and ρ0 is a fixed reference density value. The coefficients hx
and hy are the metrics for the x and y coordinates, respectively, and

hxy =
1

hxhy

∂hx
∂y

, hyx =
1

hxhy

∂hy
∂x

. (1.8)
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2 CCSR OCEAN COMPONENT MODEL (COCO)

The way to obtain metrics for a selected horizontal coordinate system is described in chapter 2, and see
appendix D for the basis of representing the equations under the generalized curvilinear coordinate system.
V and D represent viscosity and diffusion terms, respectively, and their formulation will be described later.
The equation of state (1.7) used in this model is a polynomial approximation of the IES80 formula [UNESCO,
1981 ]. It is described in appendix C. The model can also deal with passive tracers (tracers which do not
affect density of seawater), and their equations are formally identical to (1.5) and (1.6).

There’s no explicit mechanism to remove vertically unstable density stratification in these basic equations,
due to the hydrostatic approximation (1.3). The effect of vertical convection is parameterized by convective
adjustment, which is artificial, instantaneous vertical homogenization of unstable water columns, or by some
other methods. The convective adjustment is described in chapter 4.

Equations under the σ vertical coordinate are derived now. The mean sea level is set to z = 0, and sea
surface height is represented by z = η(x, y, t). By prescribing a fixed depth z = zB(< 0), the normalized
vertical coordinate σ is defined as

σ =
z − zB
η − zB

. (1.9)

Hereafter, the coordinate systems with the z and σ vertical coordinates are called z and σ coordinate
systems, respectively, and the independent variables for the z coordinate system are temporarily described
by (x∗, y∗, z∗, t∗), while those for the σ coordinate system are described by (x, y, σ, t). The transformation
between the two coordinate systems is described by

x = x∗, y = y∗, σ =
z∗ − zB
η − zB

, t = t∗. (1.10)

When a physical quantity Ψ is functionally represented as Ψ = ψ∗(x∗, y∗, z∗, t∗) in the z coordinate system
and as Ψ = ψ(x, y, σ, t) in the σ coordinate system, its derivatives are transformed as

∂ψ∗

∂x∗
=

∂ψ

∂x

∂x

∂x∗
+
∂ψ

∂y

∂y

∂x∗
+
∂ψ

∂σ

∂σ

∂x∗
+
∂ψ

∂t

∂t

∂x∗

=
∂ψ

∂x
− σ

η − zB

∂η

∂x

∂ψ

∂σ
, (1.11)

∂ψ∗

∂y∗
=

∂ψ

∂y
− σ

η − zB

∂η

∂y

∂ψ

∂σ
, (1.12)

∂ψ∗

∂z∗
=

1
η − zB

∂ψ

∂σ
, (1.13)

∂ψ∗

∂t∗
=

∂ψ

∂t
− σ

η − zB

∂η

∂t

∂ψ

∂σ
. (1.14)

Lagrangian differential of Ψ is transformed as

dψ∗

dt∗
≡ ∂ψ∗

∂t∗
+

u

hx

∂ψ∗

∂x∗
+

v

hy

∂ψ∗

∂y∗
+ w

∂ψ∗

∂z∗

=
∂ψ

∂t
+

u

hx

∂ψ

∂x
+

v

hy

∂ψ

∂y
+

w

η − zB

∂ψ

∂σ
− σ

η − zB

∂ψ

∂σ

(
∂η

∂t
+

u

hx

∂η

∂x
+

v

hy

∂η

∂y

)
, (1.15)

where the velocity components are assumed to represent the same quantities in the both coordinate systems.
Vertical velocity in the σ coordinate system, ω, is defined by

ω ≡ dσ

dt∗
=

w

η − zB
− σ

η − zB

(
∂η

∂t
+

u

hx

∂η

∂x
+

v

hy

∂η

∂y

)
, (1.16)

and thus (1.15) is rewritten as

dψ∗

dt∗
=
∂ψ

∂t
+

u

hx

∂ψ

∂x
+

v

hy

∂ψ

∂y
+ ω

∂ψ

∂σ
≡ dψ

dt
. (1.17)
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Using these relationships, (1.1)–(1.6) are transformed as

du

dt
+ hxyuv − hyxvv − fv = − 1

ρ0hx

(
∂P

∂x
+ σρg

∂η

∂x

)
+ Vu, (1.18)

dv

dt
+ hyxuv − hxyuu+ fu = − 1

ρ0hy

(
∂P

∂y
+ σρg

∂η

∂y

)
+ Vv, (1.19)

0 = − 1
η − zB

∂P

∂σ
− ρg, (1.20)

∂η

∂t
+

1
hxhy

{
∂

∂x
[hyu(η − zB)] +

∂

∂y
[hxv(η − zB)]

}
+ (η − zB)

∂ω

∂σ

= 0, (1.21)
∂

∂t
[T (η − zB)] +

1
hxhy

{
∂

∂x
[hyuT (η − zB)] +

∂

∂y
[hxvT (η − zB)]

}
+

∂

∂σ
[ωT (η − zB)]

= (η − zB)DT , (1.22)
∂

∂t
[S(η − zB)] +

1
hxhy

{
∂

∂x
[hyuS(η − zB)] +

∂

∂y
[hxvS(η − zB)]

}
+

∂

∂σ
[ωS(η − zB)]

= (η − zB)DS , (1.23)

where the diffusion terms in (1.22) and (1.23) are assumed to be expressed with the same dimension as in
(1.5) and (1.6). Here, the advection terms in the momentum equations are represented by the advective
form, while those in the tracer equations are by the flux form. These expressions are coordinated with the
actual discretization of COCO, which will be described in chapter 3.

The prognostic equation for sea surface height is obtained by vertically integrating (1.4) from bottom
to top. By expressing the depth of the ocean floor by z = −H(x, y), vertical integration of the continuity
equation yields

1
hxhy

∫ η

−H

∂

∂x
(hyu)dz +

1
hxhy

∫ η

−H

∂

∂y
(hxv)dz + w|z=η − w|z=−H = 0. (1.24)

Applying the relationships∫ η

−H

∂

∂x
(hyu)dz =

∂

∂x

(
hy

∫ η

−H
udz

)
− u|z=ηhy ∂η

∂x
− u|z=−Hhy

∂H

∂x
, (1.25)∫ η

−H

∂

∂y
(hxv)dz =

∂

∂y

(
hx

∫ η

−H
vdz

)
− v|z=ηhx ∂η

∂y
− v|z=−Hhx

∂H

∂y
, (1.26)

and the later described boundary conditions for w, (1.52) and (1.53),

∂η

∂t
+

1
hxhy

[
∂

∂x
(hyU) +

∂

∂y
(hxV )

]
= 0 (1.27)

is obtained, where U and V indicate the vertically integrated horizontal velocity components

U =
∫ η

−H
udz = (η − zB)

∫ 1

0

udσ +
∫ zB

−H
udz, (1.28)

V =
∫ η

−H
vdz = (η − zB)

∫ 1

0

vdσ +
∫ zB

−H
vdz. (1.29)

When sea surface pressure Pη is given, pressure in the ocean is calculated by vertically integrating (1.3)
and (1.20) from the sea surface. It is expressed as

P = Pη + g(η − zB)
∫ 1

σ

ρdσ′ for zB < z < η (0 < σ < 1), (1.30)

= Pη + g(η − zB)
∫ 1

0

ρdσ + g

∫ zB

z

ρdz′ for z < zB. (1.31)
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1.2 Diffusion and Viscosity Terms

1.2.1 Diffusion

The case considered here is that:

1. Diffusive flux of tracer follows the Fick’s law.

2. Diffusion coefficient tensor is diagonal, and its two horizontal components are identical.

It corresponds to a classical case of Laplacian diffusion, with anisotropy between the horizontal and vertical
directions. Other cases, such as isopycnal diffusion, will be described later in corresponding sections. Only
the expression for DT is presented here, as that for DS is obvious once DT is known.

When the horizontal and vertical diffusion coefficients are described by KH and KV , respectively, the
components of the diffusive tracer flux vector are represented by

x :
KH

hx

∂T

∂x
, y :

KH

hy

∂T

∂y
, z : KV

∂T

∂z
. (1.32)

The diffusion term is the divergence of this vector, thus

DT =
1

hxhy

[
∂

∂x

(
KH

hy
hx

∂T

∂x

)
+

∂

∂y

(
KH

hx
hy

∂T

∂y

)]
+

∂

∂z

(
KV

∂T

∂z

)
. (1.33)

1.2.2 Viscosity

Under the shallowness and hydrostatic approximations, the viscosity terms are represented by

Vu =
1

hxhy

[
1
hy

∂

∂x

(
h2
y

τxx − τyy
2

)
+

1
hx

∂

∂y
(h2
xτxy)

]
+
∂τxz
∂z

+
τxz
a
, (1.34)

Vv =
1

hxhy

[
1
hy

∂

∂x
(h2
yτxy) +

1
hx

∂

∂y

(
h2
x

τyy − τxx
2

)]
+
∂τyz
∂z

+
τyz
a
, (1.35)

where τ is stress tensor. A constitutive equation linearly relates components of the stress tensor with
components of strain rate tensor ε. For the classical case of Laplacian viscosity with horizontal-vertical
transverse anisotropy, the constitutive equation is

τxx − τyy = 2AH(εxx − εyy), (1.36)

τxy = 2AHεxy, (1.37)

τxz = 2AV εxz, (1.38)

τyz = 2AV εyz, (1.39)

and components of the strain rate tensor are represented by

εxx − εyy =
1
hx

∂u

∂x
+ hxyv − 1

hy

∂v

∂y
− hyxu, (1.40)

εxy =
1
2

[
hx
hy

∂

∂y

(
u

hx

)
+
hy
hx

∂

∂x

(
v

hy

)]
, (1.41)

εxz =
1
2

(
∂u

∂z
− u

a

)
, (1.42)

εyz =
1
2

(
∂v

∂z
− v

a

)
. (1.43)

AH and AV are horizontal and vertical, respectively, viscosity coefficients. This formulation is well-defined
for the case of spatially varying viscosity coefficients. See appendix D.6 for detail.
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1.3 Boundary Conditions

A no-slip condition is imposed on the momentum equations (1.1)/(1.18) and (1.2)/(1.19) on lateral bound-
aries:

u|lateral = 0, (1.44)

v|lateral = 0. (1.45)

At the bottom, vertical momentum flux is assumed to follow a simple quadratic drag formula, and the
bottom boundary condition is expressed as

AV
∂u

∂z

∣∣∣∣
bottom

= Cb
√
u2 + v2 × u, (1.46)

AV
∂v

∂z

∣∣∣∣
bottom

= Cb
√
u2 + v2 × v, (1.47)

where Cb is a drag coefficient (nondimensional). Since the vertical resolution is not fine enough to resolve
the bottom Ekman layer in most applications, the flow direction of the model’s bottom level is expected to
be significantly different from that at the ocean floor. In order to take it into account, the bottom stress is
often formulated by

AV
∂u

∂z

∣∣∣∣
bottom

= Cb
√
u2 + v2 (u cos θ + v sin θ), (1.48)

AV
∂v

∂z

∣∣∣∣
bottom

= Cb
√
u2 + v2 (v cos θ − u sin θ) (1.49)

with nonzero turning angle θ, although it is fixed at zero in the default setup of COCO. At the sea surface,
the condition is

AV
∂u

∂z

∣∣∣∣
surface

=
τx
ρ0
, (1.50)

AV
∂v

∂z

∣∣∣∣
surface

=
τy
ρ0
, (1.51)

where τx and τy are x and y components, respectively, of surface wind stress.
Continuity of fluid requires a boundary condition for w at the ocean floor:

w|bottom = −
(
u|bottom

hx

∂H

∂x
+
v|bottom

hy

∂H

∂y

)
. (1.52)

On the other hand, w at the sea surface is defined by

w|surface =
dη

dt

=
∂η

∂t
+
u|z=η
hx

∂η

∂x
+
v|z=η
hy

∂η

∂y
. (1.53)

By definition, boundary conditions for ω are:

ω|σ=0 =
w|z=zB

η − zB
, (1.54)

ω|σ=1 =
w|z=η
η − zB

− 1
η − zB

(
∂η

∂t
+
u|z=η
hx

∂η

∂x
+
v|z=η
hy

∂η

∂y

)
= 0. (1.55)
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For the tracer equations (1.5)/(1.22) and (1.6)/(1.23), a no-flux condition is applied on solid boundaries:

∂T

∂n

∣∣∣∣
solid

= 0, (1.56)

∂S

∂n

∣∣∣∣
solid

= 0, (1.57)

where ∂/∂n represents partial differentiation in the direction normal to the boundary. Sea surface boundary
condition for the temperature equation is

KV
∂T

∂z

∣∣∣∣
surface

= − FH
ρ0Cp

, (1.58)

where FH is heat flux at the sea surface (positive upward) and Cp is the heat capacity of seawater. The
surface boundary condition for the salinity equation is generally represented by

∂S

∂z

∣∣∣∣
surface

= −FS , (1.59)

where FS is salt flux at the sea surface (positive upward, i.e., it is positive when salt is extracted from
seawater). Nonzero salt flux occurs mostly where sea ice forms or melts1. Note, however, that freshwater
flux at the sea surface, FW , dilutes or concentrates seawater and thus affects sea surface salinity even if
FS = 0. Note also that addition or subtraction of freshwater by nonzero FW makes it necessary to take
account of the heat (temperature) of added or subtracted water. Treatment for such effects of FW on salinity
and temperature is described in section 3.2.3.

Sea surface boundary conditions are the principal driving force for the ocean circulation, and the methods
used in COCO to specify them are described in appendix A. The sea surface fluxes are significantly affected
by existence of sea ice, and its treatment is described in appendix B.

1.4 Mode Split for Horizontal Velocity

COCO version 4.0 explicitly predicts changes of the free surface, so external gravity waves are represented
in the model, whose phase speed is significantly larger than that of other waves or advection velocity. In
order to reduce the computational cost arising from a severe CFL condition for external gravity waves, their
governing equations are separately solved with a short time step. This separation is realized by splitting
the horizontal velocity components into their vertical mean (external mode) and deviation from it (internal
mode). The basic idea for mode separation is taken from Killworth et al. [1991 ], though it is re-formulated
from scratch to adapt to COCO.

1.4.1 External Mode Equations

The advection terms of the σ coordinate momentum equations (1.18) and (1.19) are expressed by

u

hx

∂α

∂x
+

v

hy

∂α

∂y
+ ω

∂α

∂σ
, (1.60)

where α stands for u or v. Its flux form is obtained by applying the continuity equation (1.21) as

1
η − zB

{
1

hxhy

∂

∂x
[hyuα(η − zB)] +

1
hxhy

∂

∂y
[hxvα(η − zB)] + (η − zB)

∂

∂σ
(ωα) + α

∂η

∂t

}
. (1.61)

1There also is extraction of salt by generation of sea-salt aerosols, which is induced by seawater splashes, and their precipi-
tation leads to addition of salt. Such factors are negligible.
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Therefore, vertical integration of the advection terms of the σ coordinate momentum equations yields

(η − zB)
∫ 1

0

(
u

hx

∂α

∂x
+

v

hy

∂α

∂y
+ ω

∂α

∂σ

)
dσ

=
1

hxhy

∂

∂x

[
hy(η − zB)

∫ 1

0

uαdσ

]
+

1
hxhy

∂

∂y

[
hx(η − zB)

∫ 1

0

vαdσ

]

−(η − zB)(ωα)|σ=0 +
∂η

∂t

∫ 1

0

αdσ. (1.62)

Since

(η − zB)
∫ 1

0

∂α

∂t
dσ =

∂

∂t

[
(η − zB)

∫ 1

0

αdσ

]
− ∂η

∂t

∫ 1

0

αdσ, (1.63)

vertical integration of dα/dt becomes

(η − zB)
∫ 1

0

dα

dt
dσ =

∂

∂t

[
(η − zB)

∫ 1

0

αdσ

]
+

1
hxhy

∂

∂x

[
hy(η − zB)

∫ 1

0

uαdσ

]

+
1

hxhy

∂

∂y

[
hx(η − zB)

∫ 1

0

vαdσ

]
− (η − zB)(ωα)|σ=0. (1.64)

For z < zB∫ zB

−H

dα

dt
dz =

∫ zB

−H

∂α

∂t
dz +

∫ zB

−H

{
1

hxhy

[
∂

∂x
(hyuα) +

∂

∂y
(hxvα)

]
+

∂

∂z
(wα)

}
dz

=
∂

∂t

∫ zB

−H
αdz +

1
hxhy

[∫ zB

−H

∂

∂x
(hyuα)dz +

∫ zB

−H

∂

∂y
(hxvα)dz

]
+(wα)|z=zB − (wα)|z=−H

=
∂

∂t

∫ zB

−H
αdz +

1
hxhy

[
∂

∂x

∫ zB

−H
hyuαdz − hy(uα)|z=−H

∂H

∂x

]

+
1

hxhy

[
∂

∂y

∫ zB

−H
hxvαdz − hx(vα)|z=−H

∂H

∂y

]

+(wα)|z=zB − α|z=−H

(
−u|z=−H

hx

∂H

∂x
− v|z=−H

hy

∂H

∂y

)

=
∂

∂t

∫ zB

−H
αdz +

1
hxhy

[
∂

∂x

(
hy

∫ zB

−H
uαdz

)
+

∂

∂y

(
hx

∫ zB

−H
vαdz

)]
+ (wα)|z=zB .(1.65)

Therefore, vertical integration of dα/dt over a full water column is

(η − zB)
∫ 1

0

dα

dt
dσ +

∫ zB

−H

dα

dt
dz

=
∂

∂t

[
(η − zB)

∫ 1

0

αdσ

]
+
∂

∂t

∫ zB

−H
αdz

+
1

hxhy

∂

∂x

[
hy(η − zB)

∫ 1

0

uαdσ

]
+

1
hxhy

∂

∂x

(
hy

∫ zB

−H
uαdz

)

+
1

hxhy

∂

∂y

[
hx(η − zB)

∫ 1

0

vαdσ

]
+

1
hxhy

∂

∂y

(
hx

∫ zB

−H
vαdz

)
. (1.66)

The pressure gradient term in the σ coordinate is represented by

∂P

∂x
+ σρg

∂η

∂x
=
∂Pη
∂x

+
(
σρ+

∫ 1

σ

ρdσ′
)
g
∂η

∂x
+ g(η − zB)

∫ 1

σ

∂ρ

∂x
dσ′ (1.67)
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for the x direction, for example. The parenthesized quantity of the second term in the right hand side
becomes sea surface density for σ = 1, becomes averaged density over 0 ≤ σ ≤ 1

ρσ ≡
∫ 1

0

ρdσ (1.68)

for σ = 0, and monotonically decrease with σ in between (as ρ is a monotonically decreasing function of
σ). As described later, the dependence of this quantity on σ makes the mode separation difficult. Assuming
that density variation over 0 ≤ σ ≤ 1 is small, therefore, this quantity is approximated by ρσ, which means
that the pressure gradient terms in (1.18) and (1.19) are replaced by

∂P

∂x
+ σρg

∂η

∂x
→ ∂Pη

∂x
+ ρσg

∂η

∂x
+ g(η − zB)

∫ 1

σ

∂ρ

∂x
dσ′, (1.69)

∂P

∂y
+ σρg

∂η

∂y
→ ∂Pη

∂y
+ ρσg

∂η

∂y
+ g(η − zB)

∫ 1

σ

∂ρ

∂y
dσ′. (1.70)

Since horizontal derivative of (1.31) is

∂P

∂x
=
∂Pη
∂x

+ ρσg
∂η

∂x
+ g(η − zB)

∫ 1

0

∂ρ

∂x
dσ + g

∫ zB

z

∂ρ

∂x
dz′, (1.71)

this treatment does not violate continuity of pressure at z = zB, at least.
Using the above, vertical integration of the momentum equations (1.1)/(1.18) and (1.2)/(1.19) results in

∂U

∂t
− fV = − 1

hxhy

∂

∂x

[
hy(η − zB)

∫ 1

0

u2dσ

]
− 1
hxhy

∂

∂x

(
hy

∫ zB

−H
u2dz

)

− 1
hxhy

∂

∂y

[
hx(η − zB)

∫ 1

0

uvdσ

]
− 1
hxhy

∂

∂y

(
hx

∫ zB

−H
uvdz

)

−hxy
[
(η − zB)

∫ 1

0

uvdσ +
∫ zB

−H
uvdz

]
+ hyx

[
(η − zB)

∫ 1

0

v2dσ +
∫ zB

−H
v2dz

]

+(η − zB)
∫ 1

0

Vudσ +
∫ zB

−H
Vudz

−ρ
σg(η +H)
ρ0hx

∂η

∂x
− η +H

ρ0hx

∂Pη
∂x

− g(η − zB)(zB +H)
ρhx

∂ρσ

∂x

−g(η − zB)2

ρ0hx

∫ 1

0

dσ

∫ 1

σ

dσ′
∂ρ

∂x
− g

ρ0hx

∫ zB

−H
dz

∫ zB

z

dz′
∂ρ

∂x
, (1.72)

∂V

∂t
+ fU = − 1

hxhy

∂

∂x

[
hy(η − zB)

∫ 1

0

uvdσ

]
− 1
hxhy

∂

∂x

(
hy

∫ zB

−H
uvdz

)

− 1
hxhy

∂

∂y

[
hx(η − zB)

∫ 1

0

v2dσ

]
− 1
hxhy

∂

∂y

(
hx

∫ zB

−H
v2dz

)

−hyx
[
(η − zB)

∫ 1

0

uvdσ +
∫ zB

−H
uvdz

]
+ hxy

[
(η − zB)

∫ 1

0

u2dσ +
∫ zB

−H
u2dz

]

+(η − zB)
∫ 1

0

Vvdσ +
∫ zB

−H
Vvdz

−ρ
σg(η +H)
ρ0hy

∂η

∂y
− η +H

ρ0hy

∂Pη
∂y

− g(η − zB)(zB +H)
ρhy

∂ρσ

∂y

−g(η − zB)2

ρ0hy

∫ 1

0

dσ

∫ 1

σ

dσ′
∂ρ

∂y
− g

ρ0hy

∫ zB

−H
dz

∫ zB

z

dz′
∂ρ

∂y
. (1.73)
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Here, we rewrite these equations symbolically as

∂U

∂t
− fV = −ρ

σg(η +H)
ρ0hx

∂η

∂x
− (η +H)

ρ0hx

∂Pη
∂x

+X, (1.74)

∂V

∂t
+ fU = −ρ

σg(η +H)
ρ0hy

∂η

∂y
− (η +H)

ρ0hy

∂Pη
∂y

+ Y. (1.75)

These are further modified to

∂U

∂t
− fV = −ρ

σg(η +H)
ρ0hx

∂η

∂x
− (η +H)

ρ0hx

∂Pη
∂x

+X ′ + VU , (1.76)

∂V

∂t
+ fU = −ρ

σg(η +H)
ρ0hy

∂η

∂y
− (η +H)

ρ0hy

∂Pη
∂y

+ Y ′ + VV , (1.77)

where

X ′ = X − VU , (1.78)

Y ′ = Y − VV , (1.79)

and VU (VV ) is calculated by replacing u (v) by U (V ) in Vu (Vv). This treatment is for the sake of numerical
stability. These equations are approximated by

∂U

∂t
− fV = −gH

hx

∂η

∂x
− H

ρ0hx

∂Pη
∂x

+X ′ + VU , (1.80)

∂V

∂t
+ fU = −gH

hy

∂η

∂y
− H

ρ0hy

∂Pη
∂y

+ Y ′ + VV , (1.81)

The equations (1.27), (1.80) and (1.81) construct the governing equations for the external mode. One time
interval of integration for the internal mode equations is split into a number of shorter time intervals, and
integration of the external mode equations proceeds incrementally by using that shorter time step. During
an interval of internal mode integration, X ′ and Y ′ are estimated once initially and don’t vary, while VU
and VV change according to changing U and V .

1.4.2 Internal Mode Equations

The momentum equations (1.1)/(1.18) and (1.2)/(1.19) can be expressed in the form of

∂u

∂t
− fv = − ρσg

ρ0hx

∂η

∂x
− 1
ρ0hx

∂Pη
∂x

+GX , (1.82)

∂v

∂t
+ fu = − ρσg

ρ0hy

∂η

∂y
− 1
ρ0hy

∂Pη
∂y

+GY . (1.83)

These formal expressions are identical between the z and σ coordinate systems. Here, an average of a
quantity α in the form of

α̃ =
1
H

[
(−zB)

∫ 1

0

αdσ +
∫ zB

−H
udz

]
(1.84)

is considered. Since its upper and lower limits are independent of time, identities

∂ũ

∂t
+ f ṽ = − ρσg

ρ0hx

∂η

∂x
− 1
ρ0hx

∂Pη
∂x

+ G̃X , (1.85)

∂ṽ

∂t
− fũ = − ρσg

ρ0hy

∂η

∂y
− 1
ρ0hy

∂Pη
∂y

+ G̃Y (1.86)
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hold. On the other hand, when quantities û and v̂ which follow

∂û

∂t
− f v̂ = GX , (1.87)

∂v̂

∂t
+ fû = GY (1.88)

are considered, equations

∂(û− ˜̂u)
∂t

− f(v̂ − ˜̂v) =
∂(u− ũ)

∂t
− f(v − ṽ), (1.89)

∂(v̂ − ˜̂v)
∂t

+ f(û− ˜̂u) =
∂(v − ṽ)

∂t
+ f(u− ũ) (1.90)

hold, as the approximation (1.69) and (1.70) are applied. Therefore, deviation of velocity components from
their average of the form of (1.84)

u′ = u− ũ, v′ = v − ṽ (1.91)

is obtained by solving (1.87) and (1.88). This deviation is here defined as the internal mode of horizontal
velocity.

1.4.3 Mode Combination

When the external (U and V ) and internal (u′ and v′) modes are given, actual horizontal velocity components
u and v are calculated by

u =
U

H
+ u′ − η

H

∫ 1

0

udσ, (1.92)

v =
V

H
+ v′ − η

H

∫ 1

0

vdσ. (1.93)

It is impossible to analytically solve these integral equations. Nor is it easy to obtain their numerical solutions
under their discretized expressions. In addition, their dependence on η complicates tracer conservation under
discretized form. Therefore, the last terms of (1.92) and (1.93) are neglected.



Chapter 2

Horizontal Coordinate and Grid

In COCO version 4.0, the model horizontal coordinate/grid is generated by transforming the spherical
(longitude-latitude) coordinate system and its coordinate lines (meridians and latitude circles) using the
polar stereographic projection and conformal mapping. The basic concept of the transformation follows the
method proposed by Bentsen et al. [1999 ].

2.1 Polar Stereographic Projection

Consider the spherical coordinate system on a sphere of radius 1/2, and represent its longitude by λ and
latitude by ϕ. Assume the extended complex plane1 tangential to this sphere, which contact with the sphere
at ϕ = π/2 (the North Pole) and whose real axis is in the direction of λ = 0. The polar stereographic
projection of a point (λ,ϕ) on the sphere onto a value (point) z of the complex plane is given by

z = tan
(π

4
− ϕ

2

)
eiλ. (2.1)

This mapping is a bijection, and its inverse is given by

λ = arg z, (2.2)

ϕ =
π

2
− 2 arctan |z|. (2.3)

This projection is obtained as an intersecting point of the complex plane and a line connecting the given
point and the South Pole of the sphere (Figure 2.1).

This polar stereographic projection has the following characteristics:

1. The North Pole, the South Pole, and the equator of the sphere are transformed into the coordinate
origin (zero), the point at infinity, and a circle of unit radius centered at the origin, respectively, of the
complex plane.

2. Meridians and latitude circles on the sphere are transformed into straight lines starting from the origin
and circles centered at the origin, respectively.

3. A circle on the sphere (a plane section of the sphere) is transformed into a circle on the complex plane.
Note that a circle passing through the South Pole of the sphere is transformed into a straight line (a
circle of infinite radius) on the complex plane.

1The point at infinity is added to the complex plane.

11
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Figure 2.1: Polar stereographic projection.

4. Angle of any two intersecting curves is preserved by the mapping.

5. Shape of an infinitesimal figure on the sphere is preserved by the mapping.

The last item means that an infinitesimal figure on the sphere is isotropically enlarged or shrunk by this
projection, and its scaling factor is represented by

2
1 + sinϕ

or 1 + |z|2. (2.4)

2.2 Conformal Mapping on Complex Plane

A mapping f defined in a region of the complex plane is called conformal mapping if it is analytic and its
derivatives are nonzero in the considered region. A conformal mapping f has the following characteristics:

1. A line tangential to any curve at z0 is rotated by an angle of arg f ′(z0). Therefore, an angle of two
intersecting curves is preserved by a conformal mapping.

2. An infinitesimal figure at z0 is (isotropically) enlarged with a scaling factor of |f ′(z0)|.

A transformation on the complex plane (a bijection of the complex plane onto itself) expressed by the
form of

f : z �→ w; w =
az + b

cz + d
(ad− bc �= 0), (2.5)

where a, b, c and d denote fixed complex numbers, is called a linear fractional transformation. A linear
fractional transformation is regular and f ′ �= 0 except for z = −d/c. This singular point is mapped onto in-
finity. Including infinity, therefore, a linear fractional transformation is a conformal mapping on the extended
complex plane. A linear fractional transformation is uniquely determined by designating transformation of
three points. When the points z1, z2 and z3 are transformed into w1, w2 and w3, the linear fractional
transformation is determined as

(w − w1)(w3 − w2)
(w − w2)(w3 − w1)

=
(z − z1)(z3 − z2)
(z − z2)(z3 − z1)

. (2.6)

A linear fractional transformation maps a circle on the complex plane onto a circle (a straight line is regarded
as a circle of infinite radius).
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2.3 Transformed Coordinate and Grid System

The spherical coordinate system is defined by a set of (infinite) meridians (lines with constant longitudes)
and a set of (infinite) latitude circles (lines with constant latitudes). This coordinate system defined by
geographical longitudes and latitudes is hereafter referred to as the geographical coordinate system. A finite
subset of these meridians and latitude circles constructs a grid system for the geographical coordinate. The
following procedure generates a new coordinate/grid system on the sphere:

1. Project the meridians and latitude circles onto the complex plane by the polar stereographic projection.

2. Transform the projected lines by a linear fractional transformation on the complex plane.

3. Project the transformed lines back onto the sphere by the inverse of the polar stereographic projection.

Since the polar stereographic projection (and its inverse) and the linear fractional transformation preserve
an angle of any two intersecting curves, the new coordinate lines on the sphere meet at right angles at ev-
ery intersecting point. Therefore, the new coordinate lines define an orthogonal curvilinear coordinate/grid
system. Grid lines of the geographical coordinate system are naturally transformed into those of the trans-
formed coordinate system, and thus define a grid system on the transformed coordinate system. Note that
any conformal mapping, not restricted to linear fractional transformations, is allowed in the second step to
obtain an orthogonal curvilinear coordinate/grid system, but we limit our discussion to the case of linear
fractional transformations for practical applications.

Let x and y denote horizontal coordinates of the transformed coordinate system on the sphere, and let
x be transformed from “longitude” and y from “latitude.” Then, the ranges for these coordinates are:

0 ≤ x ≤ 2π, −π
2
≤ y ≤ π

2
. (2.7)

Consider a point P on the sphere, whose geographical coordinate is denoted by (λP , ϕP ) and transformed
coordinate by (xP , yP ). Its projection onto the complex plane is

zP = tan
(π

4
− ϕP

2

)
eiλP . (2.8)

Let f be the linear fractional transformation used to obtain the transformed coordinate system currently
under consideration. Since the coordinate system is transformed by f , a coordinate value of a point is
transformed by its inverse f−1. Then, consider a point Q defined by

zQ = f−1(zP ) or zP = f(zQ). (2.9)

Since the transformed coordinate of P takes the same value as the geographical coordinate of Q (transfor-
mation is so made), the geographical coordinate of Q is represented by (xP , yP ), and its projection onto the
complex plane is

zQ = tan
(π

4
− yP

2

)
eixP . (2.10)

Given the transformed coordinate of P , therefore, the geographical coordinate of P is determined as

λP = arg f(zQ), (2.11)

ϕP =
π

2
− 2 arctan |f(zQ)| (2.12)

(see Figure 2.2).
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Figure 2.2: Transformation of coordinate values.

2.4 Defining a Suitable Linear Fractional Transformation

If we know the transformed coordinate of the geographical North and South Poles, i.e., if we know the trans-
formed coordinate (xNP , yNP ) of the geographical North Pole (λNP = 0, ϕNP = π/2) and the transformed
coordinate (xSP , ySP ) of the geographical South Pole (λSP = 0, ϕSP = −π/2), it indicates that the linear
fractional transformation f yields

zNP = f(zNQ), zSP = f(zSQ), (2.13)

where
zNP = 0, zSP = ∞, (2.14)

and

zNQ = tan
(π

4
− yNP

2

)
eixNP , (2.15)

zSQ = tan
(π

4
− ySP

2

)
eixSP . (2.16)

This means that we can set z1, z2, w1 and w2 of (2.6) as

z1 = zNQ, z2 = zSQ, w1 = 0, w2 = ∞. (2.17)

Thus, the current linear fractional transformation is written as

w = f(z) =
w3(z − zNQ)(z3 − zSQ)
(z − zSQ)(z3 − zNQ)

. (2.18)

When the transformed coordinate (x3, y3) of another point is given with its geographical coordinate known,
the current linear fractional transformation is uniquely determined.

In most cases, however, we want to obtain a transformed coordinate system by designating the geograph-
ical coordinate to which the two coordinate singularities (the North and South Poles of the geographical
coordinate system) are moved. For example, when we want to move one of the coordinate singularities
to Greenland, it is straightforward to designate the geographical coordinate of the singularity of the trans-
formed coordinate system, whereas it is not easy to know the transformed coordinate of the singularity of
the geographical coordinate system. In this case, the inverse expression of (2.18) is applicable:

w = f(z) =
−z2(z3 − z1)z/w3 + z1(z3 − z2)

−(z3 − z1)z/w3 + z3 − z2
, (2.19)
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ϕ = 0

λ = π

y = 0

x = π
λ = λC

ϕ = ϕC

Figure 2.3: Designation of the third point. Under this choice, the coordinate lines λ = π and ϕ = 0 (left) are
transformed into great circles (right), and the geographical coordinate of their intersecting point is (λC , ϕC).

where

z1 = tan
(π

4
− ϕN

2

)
eiλN , (2.20)

z2 = tan
(π

4
− ϕS

2

)
eiλS , (2.21)

and (λN , ϕN ) and (λS , ϕS) indicate the geographical coordinates of the singularities (the original North Pole
and South Pole, respectively) for the transformed coordinate system. The third point can be, of course,
arbitrarily chosen. It is convenient in most cases to set

w3 = −1, z3 = tan
(π

4
− ϕC

2

)
eiλC , (2.22)

i.e., to designate the geographical coordinate (λC , ϕC) to which the intersecting point of the equator and the
date line of the original geographical coordinate system is moved. Furthermore, it is convenient in most cases
to select (λC , ϕC) as the midpoint of the great circle connecting the two (moved) singularities (Figure 2.3).
In the Descartes coordinate with its origin at the center of the sphere, the points (λN , ϕN ) and (λS , ϕS) are
represented by (cosϕN cosλN , cosϕN sinλN , sinϕN ) and (cosϕS cosλS , cosϕS sinλS , sinϕS), respectively.
The Descartes coordinate (ξ, η, ζ) of the point (λC , ϕC) is then given by

2ξ = cosϕN cosλN + cosϕS cosλS , (2.23)

2η = cosϕN sinλN + cosϕS sinλS , (2.24)

2ζ = sinϕN + sinϕS , (2.25)

and thus

(λC , ϕC) =

(
arctan

η

ξ
, arctan

ζ√
ξ2 + η2

)
. (2.26)

Note that the above method of automatically determine the third point is not applicable to the case of
λS = λN + π and ϕS = −ϕN , which corresponds to simple rotation of the spherical coordinate system,
as it results in ξ = η = ζ = 0. In this case, the third point should be selected as (λN , 0) of the original
geographical coordinate system. The geographical coordinate to which this point is moved is{

(λN , ϕN − π/2) when 0 < ϕN < π/2
(λN + π,−ϕN − π/2) when −π/2 < ϕN < 0 . (2.27)
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Figure 2.4: Transformation of metrics.

2.5 Metrics of Transformed Coordinate

Components of the metric tensor of the transformed coordinate system are derived from those of the ge-
ographical coordinate system (a cosϕ for λ and a for ϕ, where a is the radius of the sphere). Since the
current coordinate transformation converts an orthogonal coordinate to another orthogonal coordinate, it
suffices to take account of scaling factors for the two coordinate directions. The scaling factors for the two
coordinate directions at a given point are the same, as the polar stereographic projection (and its inverse)
and conformal mapping isotropically magnifies any infinitesimal figure.

An infinitesimal circle centered at the point Q on the sphere is projected onto the complex plane as a
circle centered at zQ with a scaling factor of 1+ |zQ|2. This projected infinitesimal circle is transformed into
a circle centered at zP with a scaling factor of |f ′(zQ)|, which is then projected back to a circle on the sphere
centered at the point P with a scaling factor of (1 + |zP |2)−1. As a whole, an infinitesimal circle centered at
Q on the sphere is mapped to a circle centered at P by the above procedure, and its scaling factor is

1 + |zQ|2
1 + |zP |2 |f

′(zQ)| (2.28)

(see Figure 2.4). Coordinate lines are magnified (or shrunk) with this scaling factor, so metrics should also
be scaled by the same factor. Therefore, the metrics of the transformed coordinate at the point P are given
by

hx(xP , yP ) =
1 + |zQ|2
1 + |zP |2 |f

′(zQ)| · a cos yP , (2.29)

hy(xP , yP ) =
1 + |zQ|2
1 + |zP |2 |f

′(zQ)| · a. (2.30)

The derivative of (2.19) is

f ′(z) =
(z3 − z1)(z3 − z2)(z1 − z2)
w3 [z3 − z2 − (z3 − z1)z/w3]

2 . (2.31)

2.6 Transformation of Vector

When local Descartes coordinate (see appendix D for its definition) representation is adopted to quantify
components of vectors for both the geographical and transformed coordinate systems (it is an usual choice),
components of a vector on the transformed coordinate system are obtained by simply taking account of
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Figure 2.5: Rotation of coordinate lines.

relative rotation of the two local Descartes coordinate systems. In order to know that angle of rotation
at a point P , it suffices to know the angle between a line of constant λ (or constant ϕ) passing through a
point P and a line of constant x (or constant y) passing through the same point. Assume that the line of
constant x is inclined by an angle of α against the line of constant λ, the components of a vector for the
transformed coordinate system is determined by calculating rotation of the components of that vector for
the geographical coordinate system by the angle of −α.

The polar stereographic projection of the line of constant λ passing through the point Q is transformed
into the polar stereographic projection of the line of constant x, and the latter is inclined by the angle
of arg f ′(zQ) against the former (Figure 2.5a). On the other hand, the former is inclined by the angle of
arg zQ−arg zP against the polar stereographic projection of the line of constant λ passing through the point
P (Figure 2.5b). Therefore, the angle α is the sum of the two, namely,

α = arg zQ − arg zP + arg f ′(zQ). (2.32)

2.7 Mercator Grid

If a grid system of the geographical coordinate system is defined by a set of constant-interval meridians
and latitude circles, i.e., if both the longitudinal grid interval Δλ and the latitudinal grid interval Δϕ are
constant, the actual shape of grids on the sphere varies with latitude (more latitudinally elongated rectangles
at higher latitudes). If one wish to define a grid system of the geographical coordinate system where shapes
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(a)

(b)

Figure 2.6: Grid system examples.

of the grids on the sphere are similar to one another, latitudinal grid interval should be varied with latitude.
For such a purpose, the Mercator projection is useful.

The Mercator projection of spherical surface onto a plane is defined by

X = λ, (2.33)

Y = ln
[
tan
(ϕ

2
+
π

4

)]
, (2.34)

where X and Y denote the projected coordinates. The Mercator projection maps an infinitesimal figure on
the sphere onto a plane with preserving its shape. Therefore, when a grid system is defined on the Mercator
coordinate system by lines of constant X and Y with constant grid intervals (ΔX and ΔY are constant),
its inverse projection onto the sphere forms grids of similar shapes on the geographical coordinate system.
Note that one must select upper and lower limits for Y (or equivalent geographical latitudes) in constructing
such a Mercator grid system, as the range of possible Y is unbounded (−∞ < Y <∞).

Since the coordinate transformation considered hereabove preserves shape of figures, a Mercator grid
on the geographical coordinate system also defines a system of similar-shaped grids on the transformed
coordinate system.

2.8 Coordinate/Grid System Examples

Two examples for grid systems generated by the above mentioned procedure are shown in Figure 2.6. In
Figure 2.6a, there are 128 and 120 grids in the x and y directions, respectively. The base grid system on the
geographical coordinate system is a Mercator grid system defined between ϕ = 78◦S and ϕ = 85◦N. The
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geographical North Pole is moved to λ = 40◦W, ϕ = 75◦N on Greenland, and the geographical South Pole
is kept unchanged. This grid system is actually used at CCSR as one of the standard model configurations.

Figure 2.6b exemplifies a so-called tripolar grid system. The regular geographical coordinate/grid system
is applied to the south of ϕ = 60◦N. The grid system to the north of this latitude, on the other hand,
is generated by a linear fractional transformation, whose poles are located at λ = 60◦E, ϕ = 60◦N and
λ = 120◦W, ϕ = 60◦N. The grid interval in the y direction is constant, and the number of grids in the y
direction is chosen to match that of longitudinal grids of the geographical grid system defined to the south
of ϕ = 60◦N (a half of longitudinal grids). The grid interval and the number of grids in the x direction
is arbitrarily selected. This method guarantees smooth (differentiable) connection of the two coordinate
systems.





Chapter 3

Discretization of Baseline Model

The mathematical model formulated in chapter 1 is discretized by use of the finite difference (or finite volume)
method. In the baseline model, very simple and primitive algorithms are adopted for finite differencing the
model equations. Some of those primitive schemes are replaced by much more sophisticated ones in most
applications. For the purpose of grasping the gross structure of the model, however, it is very useful to start
with the simple ones. More sophisticated numerical algorithms and physical parameterizations currently
included in the COCO package are described in chapter 4.

3.1 Arrangement of Discretized Variables and Their Labeling

Before going into the description of the finite differenced expressions of the equations, some general rules are
described first with regard to the arrangement of the variables on the grid system and the labeling of grids.
The rule defined here is utilized throughout this document.

3.1.1 Discretization in Time

The model is numerically integrated by using a fixed time interval Δt. When there is a need to specify the
time level, it is indicated by a superscript. For example, the value of the variable T at the n-th time level is
represented by T n.

3.1.2 Horizontal Grid

The domain is horizontally divided into a number of “boxes” by lines of constant x and y. Grid spacing in
the x direction Δx is assumed to be constant, while that in the y direction Δy is allowed to vary (Δy is
a function of y). In the following description, the terms “east,” “west,” “north,” and “south” are used to
indicate horizontal directions. The direction of increasing x is referred to as “east,” and that of increasing
y is referred to as “north.”

The variables are arranged at grid points. The Arakawa B-grid system [Mesinger and Arakawa, 1976 ] is
used, where the horizontal velocity components are defined at the vertices of the grid boxes and the tracer
quantities (temperature and salinity), density, and sea surface height are defined at the centers of the grid
boxes. Hereafter in this document, the vertices of the grid boxes are called “velocity points” or “V-points,”
and the centers are called “tracer points” or “T-points.” As for the vertical velocity component, two sets of
grid-point values are defined: one defined at the vertices of the grid boxes and the other at the center. In the
horizontal view, these points for the vertical velocity coincide with either of V-points or T-points. However,

21
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Figure 3.1: (a) Horizontal arrangement of the variables. Symbol V is placed only where the V-point variables
could take nonzero values. (b) Labeling of the grid boxes in the horizontal direction relative to the centered
box denoted by L.

as described in the next subsection, the vertical velocity and the other variables are defined at different levels
in the vertical. When it is intended to draw a distinction, the terms “WV-points” and “WT-points” are
used. Coastlines are defined by grid lines connecting V-points.

Grid points are identified by subscripts attached to the variables. For example, TL indicates the value of
the variable T at the grid point labeled by L. The V-point labeled by L is located at the northeastern vertex
of the grid box containing TL. When there is a need to refer to the grid points adjacent to the point labeled
by L, the labels E, W , N , S, NE, SE, NW , and SW are used for subscripts, which denote the adjacent
grid point to the east, west, north, south, northeast, southeast, northwest, and southwest, respectively. The
horizontal arrangement of the variables and the labeling of the horizontal grids are illustrated in Figure 3.1.

3.1.3 Vertical Grid

In the z coordinate region, the domain is vertically divided into “levels” by horizontal planes. Spacing of
the horizontal planes Δz is allowed to vary with depth. In the σ coordinate region, the domain is vertically
divided by lines of constant σ, whose spacing Δσ is also allowed to vary in vertical. At each horizontal grid
box, bottom of the water column must be located at z = zB or deeper. The partial step representation
[Adcroft et al., 1997 ] is adopted for bottom topography, where bottom of water columns does not have to
coincide with the vertical grid boundaries, so Δz could horizontally vary.

The WT-point labeled by L is located at the center of the top face of the grid box containing TL. The
same is true for WV-points. When there is a need to refer to the grid points vertically adjacent to the point
labeled by L, the labels U and D are used for subscript, which denote the grid points just above and below,
respectively. The vertical arrangement of the variables and the labeling of the vertical grids are illustrated
in Figure 3.2.

Depths of water columns H are given at T-points. It is now denoted by HT . The depths at V-points
HV are defined by the minimum of the four surrounding T-point depths, namely

HV
L = min(HT

L , H
T
E , H

T
N , H

T
NE). (3.1)

Only HV
L appears in the finite differenced expressions described below.
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Figure 3.2: (a) Vertical arrangement of the variables. Symbols V and W are placed only where the variables
could take nonzero values. (b) Labeling of the grid boxes in the vertical direction relative to the centered
box denoted by L.
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Figure 3.3: (a) Horizontal view for the arrangement of fluxes. (b) Vertical view for the arrangement of fluxes.

3.1.4 Flux

The equations (1.1), (1.2), (1.5), and (1.6) are written in the flux-form, i.e., the advection term (and the dif-
fusion term in most cases) is represented by divergence of relevant flux. Adopting a flux-form representation
also in finite differenced expressions facilitates to preserve the conservative nature of the equations.

Let us consider a flux-form time-evolving equation for a quantity ψ:

∂ψ

∂t
=

1
hxhy

[
∂

∂x
(hyFψx ) +

∂

∂y
(hxFψy )

]
+
∂Fψz
∂z

, (3.2)

where the subscripted Fψ is the flux of ψ in the direction indicated by the subscript. The variable ψ is
a conservative quantity, in the sense that the volume integral of ψ does not change in time if there is no
flux across the boundaries enclosing the domain of the volume integral. For finite differencing this flux-form
equation, it is convenient to define the fluxes on the boundaries of the grid boxes. For the grid box containing
ψL inside, the fluxes labeled by L are defined at the western, southern, and upper boundaries, respectively,
of the box (Figure 3.3). The flux FψxL, for example, is the flux on the western boundary of the grid box
L, and at the same time it is the flux on the eastern boundary of the grid box W . Sharing the same flux
between the adjacent grids, the conservative nature is easily preserved in the finite differenced equation. The
discussion is applicable to any of the variables defined at T-points, V-points, WT-points, or WV-points.
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3.2 Time Differencing

Consider here the case of calculating values of the prognostic variables at the (n+1)-th time level when those
at the n-th and (n− 1)-th time levels are known. There are three sets of prognostic equations, namely, the
internal mode equations (1.87) and (1.88); the external mode equations (1.27), (1.80) and (1.81); and the
tracer equations (1.5)/(1.22) and (1.6)/(1.23). They are solved in this order, and each step of this procedure
is described below.

3.2.1 Internal Mode Equations

Since the equations to be solved, (1.87) and (1.88), include the Coriolis term, numerical time integration of
the equations require Δt be less than the inertial period when the Coriolis term is explicitly (forward-in-
time) integrated in time. This restriction for Δt is somewhat relaxed by introducing the semi-implicit time
stepping for the Coriolis term.

In estimating the Coriolis terms at the time level n, weighted average of velocity at the time levels n+ 1
and n− 1 is used:

(fv)n = f [αvn+1 + (1 − α)vn−1], (3.3)

where v is the two-dimensional vector whose components are u and v, and α is the semi-implicit parameter
which takes a value between zero and unity. The parameter value is adjustable in COCO, and its usual
choice is 1/2. By defining

Δvn = vn+1 − vn−1 = (un+1 − un−1, vn+1 − vn−1) = (Δun,Δvn), (3.4)

the time differenced expressions for the momentum equations (1.87) and (1.88) become

Δûn

2Δt
− αfΔv̂n = FnX , (3.5)

Δv̂n

2Δt
+ αfΔûn = FnY , (3.6)

where

FnX = GnX + f v̂n−1, (3.7)

FnY = GnY − fûn−1. (3.8)

Given FnX and FnY , therefore, û and v̂ are solved as

Δûn =
2Δt

1 + (2Δtαf)2
(FnX + 2ΔtαfFnY ), (3.9)

Δv̂n =
2Δt

1 + (2Δtαf)2
(FnY − 2ΔtαfFnX). (3.10)

The advection and pressure gradient terms in GX and GY are integrated by the leap-frog time stepping,
i.e., GnX and GnY are estimated by using un, vn and ρn. Density at the n-th time level is obtained by
substituting T n and Sn into (1.7). The viscosity term, on the other hand, is integrated by the forward-in-
time method, so un−1 and vn−1 are used in estimating GnX and GnY .

For the sake of computational stability, the Euler-backward scheme (also called the Matsuno scheme) is
periodically applied, which is known to reduce high frequency variations induced by mode splitting nature
of the leap-frog scheme [Mesinger and Arakawa, 1976 ]. In the standard configuration of COCO, nine
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Euler-backward steps and one forward step are carried out after every ninety leap-frog steps. When the
Euler-backward scheme is used, the variables at the (n − 1)-th time level are replaced by those at the n-th
time level for the predictor step, and are replaced by those estimated by the predictor step for the corrector
step. The 2Δt is replaced by Δt, and Δvn is defined by vn+1 − vn, as well.

3.2.2 External Mode Equations

The prognostic variables in the external mode equations (U , V and η) are numerically integrated from the
(n − 1)-th time level to the (n + 1)-th time level. In so doing, the time interval 2Δt is divided into N

subintervals, and the Euler-backward time stepping are repeated by N times.
The number of repetition of the Euler-backward time stepping is indicated by a superscript i. In the

predictor step, temporal estimates U ′, V ′ and η′ are calculated by

η′ − ηi

2Δt/N
= − 1

hxhy

[
∂

∂x
(hyU i) +

∂

∂y
(hxV i)

]
, (3.11)

U ′ − U i

2Δt/N
− f

V ′ + V i

2
= −gH

hx

∂ηi

∂x
− H

ρ0hx

∂Pη
∂x

+X ′ + VUi , (3.12)

V ′ − V i

2Δt/N
+ f

U ′ + U i

2
= −gH

hy

∂ηi

∂y
− H

ρ0hy

∂Pη
∂y

+ Y ′ + VV i . (3.13)

Then, the corrector step gives (i+ 1)-th step values:

ηi+1 − ηi

2Δt/N
= − 1

hxhy

[
∂

∂x
(hyU ′) +

∂

∂y
(hxV ′)

]
, (3.14)

U i+1 − U i

2Δt/N
− f

V i+1 + V ′

2
= −gH

hx

∂η′

∂x
− H

ρ0hx

∂Pη
∂x

+X ′ + VU ′ , (3.15)

V i+1 − V i

2Δt/N
+ f

U i+1 + U ′

2
= −gH

hy

∂η′

∂y
− H

ρ0hy

∂Pη
∂y

+ Y ′ + VV ′ . (3.16)

Here, the Coriolis term is semi-implicitly differenced, as in the case of the internal mode equations. The
semi-implicit parameter is fixed at 1/2.

For later use, quantities U and V which satisfy

ηn+1 − ηn−1

2Δt
= − 1

hxhy

[
∂

∂x
(hyU) +

∂

∂y
(hxV )

]
(3.17)

need to be calculated. They are obtained by averaging U ′ and V ′, as the sum of the left hand side of (3.14)
results in

N∑
i=1

ηi+1 − ηi

2Δt/N
= N

ηn+1 − ηn−1

2Δt
. (3.18)

3.2.3 Tracer Equations

Only the prognostic equation for salinity is described here, as the procedure for the temperature equation
is identical. Horizontal velocity components used in the advection terms of the tracer equations are defined
here by

ut =
U

H
+ u′n, (3.19)

vt =
V

H
+ v′n, (3.20)
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where the mode combination equations (1.92) and (1.93) are applied under the condition of η = 0, and u′

and v′ are defined by (1.91). Advection velocity so defined satisfies

ηn+1 − ηn−1

2Δt
= − 1

hxhy

∂

∂x

[
(−zB)hy

∫ 1

0

utdσ + hy

∫ zB

−H
utdz

]

− 1
hxhy

∂

∂y

[
(−zB)hx

∫ 1

0

vtdσ + hx

∫ zB

−H
vtdz

]
(3.21)

To be consistent with the approximation made in the mode combination, the σ coordinate tracer equations
must be modified (tracers are not conserved otherwise). It requires that η should be set to zero in the
horizontal advection terms of (1.23):

∂

∂t
[S(η − zB)] +

−zB
hxhy

[
∂

∂x
(hyuS) +

∂

∂y
(hxvS)

]
+ (η − zB)

∂

∂σ
(ωS) = (η − zB)DS , (3.22)

where (η − zB) in the right hand side should also be replaced by −zB for horizontal diffusion (not for
vertical diffusion). The vertical component of the advection velocity is estimated by vertically integrating
the continuity equation (1.4)/(1.21) from the bottom, with its value at the bottom taken to be zero. The σ
coordinate continuity equation must also be modified as

∂η

∂t
+

−zB
hxhy

[
∂

∂x
(hyu) +

∂

∂y
(hxv)

]
+ (η − zB)

∂ω

∂σ
= 0. (3.23)

The time-differenced equation for (3.23) is represented by

ηn+1 − ηn−1

2Δt
= −−zB

hxhy

[
∂

∂x
(hyut) +

∂

∂y
(hxvt)

]
− (ηn−1 − zB)

∂ω

∂σ
, (3.24)

where ηn+1 is already known. The time-differenced equation for (3.22) is represented by

Sn+1(ηn+1 − zB) − Sn−1(ηn−1 − zB)
2Δt

=
−zB
hxhy

[
∂FSx
∂x

+
∂FSy
∂y

]
+ (ηn−1 − zB)

∂FSσ
∂σ

, (3.25)

where FS indicates flux of salinity, whose physical dimension is the product of salinity and velocity, due to
advection and diffusion in the direction of its subscript. Note that the time level of η in the last term of
the right hand side must coincide with that used for the last term of (3.24). The adequate time level for S
used in estimating the flux FS depends on what kind of time differencing scheme is used. The default time
differencing scheme of COCO version 4.0 is the forward-in-time method for both of advection and diffusion,
i.e., Sn−1 is used for flux estimation. Changes of salinity due to addition and/or subtraction of freshwater
through the sea surface are not calculated here but separately treated afterward. When actually solving the
equation (3.25), an alternative form

Sn+1 − Sn−1

2Δt
ηn+1 − zB

−zB +
ηn+1 − ηn−1

2Δt
Sn−1

−zB =
1

hxhy

[
∂FSx
∂x

+
∂FSy
∂y

]
+
ηn−1 − zB

−zB
∂FSσ
∂σ

(3.26)

is used, as its right hand side takes an almost identical form1 to that of the time differenced salinity equation
in the z coordinate (1.6):

Sn+1 − Sn−1

2Δt
=

1
hxhy

[
∂FSx
∂x

+
∂FSy
∂y

]
+
∂FSz
∂z

, (3.27)

which makes it possible to merge the vertical direction loops for the σ and z coordinates in programming.
1It actually becomes identical when −zBΔσ and (ηn−1 − zB)ω are regarded as Δz and w, respectively.
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Figure 3.4: Redistribution of tracer for σ levels due to freshwater addition.

After solving advective/diffusive changes of tracers, the effect of heat and freshwater fluxes at the sea
surface is taken into account. Since the height of water column contained in the σ coordinate region changes
with the freshwater flux, tracers at each σ level should be re-estimated. Let K be the number of total σ
levels, and let the first level represent the top (surface). When surface freshwater flux FW (positive upward,
i.e., sea level is lowered when FW > 0) is imposed, the sea level becomes

η′n+1 = ηn+1 + Δη (3.28)

after taking the effect of FW into account, where

Δη = −2ΔtFW . (3.29)

When Δη > 0, the bottom of the k-th σ level in the z coordinate is raised by

ΔzBk =

(
1 −

k∑
l=1

Δσl

)
Δη, (3.30)

where Δσl is the vertical grid interval for the l-th level, and its top is raised by

ΔzTk =

(
1 −

k−1∑
l=1

Δσl

)
Δη, (3.31)

where

ΔzTk = ΔzBk−1 (3.32)

holds. Therefore, salinity of the k-th σ level becomes

S′n+1
k =

Sn+1
k (ηn+1 − zB) − Sn+1

k ΔzBk + Sn+1
k−1 ΔzTk

η′n+1 − zB
, (3.33)

where Δη 	 −zBΔσk is assumed, which means that there is no need to take account of contribution from
Sn+1
k−2 in this expression. For its application to the top level (k = 1), S0, which represents salinity of the

incoming freshwater, is taken to be zero2. See Figure 3.4 for its illustration. When Δη < 0, on the other
2Separate consideration is required when addition or subtraction of saline water is dealt with, as in the case of sea ice

formation or melting. See appendix B for it.
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hand, the bottom of the k-th σ level is lowered by |ΔzBk |, and its top is lowered by |ΔzTk |. In this case, tracer
of the K-th level is not affected. For 1 ≤ k ≤ K − 1,

S′n+1
k =

Sn+1
k (ηn+1 − zB) − Sn+1

k+1 ΔzBk + Sn+1
k ΔzTk

η′n+1 − zB
. (3.34)

When (3.33) is applied to the temperature equation, T0 is regarded as temperature of precipitating
water. To be more precise, the effects of freshwater input due to precipitation and freshwater extraction due
to evaporation should separately be treated, where (3.33) is applied to the former and (3.34) is applied to the
latter. The effect of heat flux FH (positive upward, i.e., sea surface is cooled when FH > 0) is represented
by subtracting 2ΔtFH/ρ0Cp from the numerator of (3.33) or (3.34) for k = 1.

3.2.4 Implicit Treatment for Vertical Diffusion

Consider the case that vertical diffusion is represented by the form of the last term of (1.33) and it is
implicitly (backward-in-time) integrated. This is the standard choice of COCO version 4.0.

Let us now express (3.26) by

Sn+1
k − Sn−1

k

2Δt
ηn+1 − zB

−zB +
ηn+1 − ηn−1

2Δt
Sn−1
k

−zB = Fn−1
k (3.35)

when whole of the diffusion term is time differenced by the explicit (forward-in-time) method, which means
that Sn−1 is used in DS . The subscript k indicates vertical level, and this expression is applied to 1 ≤ k ≤ K.
For the levels k ≥ K + 1, (3.27) is written as

Sn+1
k − Sn−1

k

2Δt
= Fn−1

k . (3.36)

When the vertical diffusion term is implicitly solved, the corresponding equation for 1 ≤ k ≤ K becomes

Sn+1
k − Sn−1

k

2Δt
ηn+1 − zB

−zB +
ηn+1 − ηn−1

2Δt
Sn−1
k

−zB
= Fn−1

k +
1

−zBΔσk

(
KV k

Sn+1
k−1 − Sn+1

k

(ηn−1 − zB)Δσ′k
−KV k+1

Sn+1
k − Sn+1

k+1

(ηn−1 − zB)Δσ′k+1

)

− 1
−zBΔσk

(
KV k

Sn−1
k−1 − Sn−1

k

(ηn−1 − zB)Δσ′k
−KV k+1

Sn−1
k − Sn−1

k+1

(ηn−1 − zB)Δσ′k+1

)
(3.37)

and that for k ≥ K + 1 becomes

Sn+1
k − Sn−1

k

2Δt
= Fn−1

k +
1

Δzk

(
KV k

Sn+1
k−1 − Sn+1

k

Δz′k
−KV k+1

Sn+1
k − Sn+1

k+1

Δz′k+1

)

− 1
Δzk

(
KV k

Sn−1
k−1 − Sn−1

k

Δz′k
−KV k+1

Sn−1
k − Sn−1

k+1

Δz′k+1

)
. (3.38)

Note that Sk−1 − Sk is regarded as zero for k = 1, and Sk − Sk+1 is regarded as zero when the level k+ 1 is
below the ocean floor (no-flux condition). Note also that (ηn−1 − zB)Δσ′K+1 is taken to be Δz′K+1. See the
later description for the definition of Δσ′ and Δz′. By defining

ΔSk = Sn+1
k − Sn−1

k , (3.39)

ηt =
ηn+1 − ηn−1

2Δt
, (3.40)

Δzk = (−zB)Δσk for 1 ≤ k ≤ K, (3.41)

Δz′k = (ηn−1 − zB)Δσ′k for 1 ≤ k ≤ K, (3.42)
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the previous expressions are rewritten as

ΔSk
2Δt

ηn+1 − zB
−zB + ηt

Sn−1
k

−zB = Fn−1
k +

1
Δzk

(
KV k

ΔSk−1 − ΔSk
Δz′k

−KV k+1
ΔSk − ΔSk+1

Δz′k+1

)
(3.43)

for 1 ≤ k ≤ K and

ΔSk
2Δt

= Fn−1
k +

1
Δzk

(
KV k

ΔSk−1 − ΔSk
Δz′k

−KV k+1
ΔSk − ΔSk+1

Δz′k+1

)
(3.44)

for k ≥ K + 1. These are further rewritten as

−αkΔSk−1 + βkΔSk − γkΔSk+1 = Fn−1
k − ηt

Sn−1
k

−zB (1 ≤ k ≤ K), (3.45)

−αkΔSk−1 + βkΔSk − γkΔSk+1 = Fn−1
k (k ≥ K + 1), (3.46)

where

αk =
KV k

ΔzkΔz′k
, (3.47)

γk =
KV k+1

ΔzkΔz′k+1

, (3.48)

βk =
ηn+1 − zB
2Δt(−zB)

+ αk + γk for 1 ≤ k ≤ K, (3.49)

=
1

2Δt
+ αk + γk for k ≥ K + 1. (3.50)

Therefore, ΔSk is obtained by solving the linear equations expressed by a tridiagonal matrix:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1 −γ1 0 · · ·
−α2 β2 −γ2 0 · · ·

...
. . . . . . . . .

... 0 −αK βK −γK 0 · · ·

... 0 0 −αK+1 βK+1 −γK+1 0 · · ·

...
...

...
...

. . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ΔS1

ΔS2

...
ΔSK

ΔSK+1

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Fn−1
1 − ηtS

n−1
1

−zB

Fn−1
2 − ηtS

n−1
2

−zB

...

Fn−1
K − ηtS

n−1
K

−zB

Fn−1
K+1

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(3.51)

3.2.5 Accelerating Model’s Approach Toward a Steady State

When the surface boundary conditions are fixed in time, it is expected that the state realized in the model
approaches to a steady state after long enough time integration. The asymptotic time evolution toward a
steady state is accelerated by introducing “acceleration parameters” αc and γc into the momentum and the
tracer equations [Bryan, 1984 ], where the time derivative terms of the momentum equations (1.1)/(1.18)
and (1.2)/(1.19) are multiplied by the factor αc, while the time derivative terms of the tracer equations
(1.5)/(1.22) and (1.6)/(1.23) are multiplied by the factor γc. As obvious from these equations, a steady
solution, where ∂/∂t = 0, is not influenced by the choice of these parameters.

The αc larger than unity slows down the propagation speed of waves in the ocean, making it possible
to use a larger value for Δt; while the γc smaller than unity lessens the volume of the ocean, making the
approach toward a steady state faster. The parameters may vary in space. Especially, it is sometimes useful
to take smaller values for γc in the deeper levels, where thickness of the levels tends to be taken large.
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It is very easy to implement this acceleration technique into the model: just divide Δt by αc for the mo-
mentum equations (for both internal and external modes), and by γc for the tracer equations. If vertically
variable γc is introduced, however, care must be taken when convective adjustment is used. Since the pa-
rameter affects effective volume of grid boxes, conservation of heat and salt is violated unless its contribution
is taken into account.

It is also technically possible to set different values for αc between the external mode momentum equations
and the internal mode equations (a much larger value for the former). This treatment effectively reduces the
speed of fast external waves, so helps reduce the computational cost in solving the external mode equations.
This treatment is justified under the condition (assumption) that external waves do not play a significant
role in forming a long-term (much longer than the time scale of external wave propagation) mean state of
the ocean.

3.3 Spatial Differencing

3.3.1 Grid Spacing and Metrics

Since grid intervals in the y and vertical directions are variable, they are expressed by adding subscripts
denoting their position, such as ΔyL, ΔzL and ΔσL. ΔyL is the y direction width of the grid box with
the T-point labeled by L at its center, and ΔzL (ΔσL) is the z direction (σ direction) thickness of the grid
box with the T-point labeled by L at its center. Since Δz can vary also in horizontal (when the partial
step bottom representation is applied), vertical grid spacing at V-points is defined separately from that at
T-points. The vertical grid spacing of the grid box with the V-point labeled by L at its center is defined by
the minimum of Δz of the four surrounding T-points:

ΔzVL = min(ΔzL,ΔzE ,ΔzN ,ΔzNE). (3.52)

There also is a need to introduce grid spacing defined by

Δy′L =
ΔyL + ΔyN

2
, (3.53)

Δz′L =
ΔzL + ΔzU

2
, (3.54)

Δσ′L =
ΔσL + ΔσU

2
. (3.55)

Δy′L is the y direction distance between the T-points labeled by L and N , and Δz′L (Δσ′L) is the vertical
distance between the T-points labeled by L and U . From another point of view, Δy′L is the y direction width
of the grid box containing the V-point labeled by L, while Δz′L (Δσ′L) is the vertical thickness of the grid
box containing the WT-point labeled by L. Position (coordinate value) itself is also indicated by subscript
and superscript. The y coordinate of the T-point (V-point) labeled by L is indicated by yL (yVL ), and the z
coordinate of the T- or V-point (WT- or WV-point) labeled by L is indicated by zL (zVL ). Labeling of the
σ coordinate is the same as that of the z coordinate. The definition of these grid variables are illustrated in
Figure 3.5.

The metrics hx and hy are also horizontally variable, so their position is denoted by their subscript.
There also is a need to distinguish T -point and V -point values, and it is denoted by superscript, as in the
case of grid interval. In the following description, values of the metrics are assumed to be defined only at
grid points (T - and V -points).
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Figure 3.5: (a) Grid spacing in y direction. (b) Grid spacing in z direction.

3.3.2 Continuity Equation and T-Point Vertical Velocity

The continuity equation represents conservation of fluid volume, so its discretization should be based on the
method of finite volume. For this purpose, the continuity equation is volume-integrated over a grid box.

Vertical integration of (1.4) from z = z1 to z = z2 yields

∂

∂x

∫ z2

z1

hyudz +
∂

∂y

∫ z2

z1

hxvdz + hxhy (w|z=z2 − w|z=z1)

−
[
∂z2
∂x

hyu|z=z2 +
∂z2
∂y

hxv|z=z2
]

+
[
∂z1
∂x

hyu|z=z1 +
∂z1
∂y

hxv|z=z1
]

= 0, (3.56)

where z2 is the depth of grid top, thus it is independent of x and y (∂z2/∂x = ∂z2/∂y = 0). On the other
hand, z1 is taken to be the depth of the ocean floor if the considered vertical interval hits the ocean floor.
Otherwise, z1 is the depth of grid bottom, and ∂z1/∂x = ∂z1/∂y = 0. Since a depth of the ocean floor does
not necessarily coincide with vertical grid boundaries, z1 is a function of x and y in the former case. In this
case, the condition (1.52) applies with z1 = −H , so[

∂z1
∂x

hyu|z=z1 +
∂z1
∂y

hxv|z=z1
]
− hxhyw|z=z1 = 0. (3.57)

Therefore, the vertically integrated continuity equation is represented by

∂

∂x

∫ z2

z1

hyudz +
∂

∂y

∫ z2

z1

hxvdz + hxhy (w|z=z2 − w|z=z1) = 0, (3.58)

with a condition that w|z=z1 is taken to be zero when z1 represents a depth of the ocean floor.
Horizontal integration of (3.58) over a grid box, whose area is defined by x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2,

is represented by ∫ x2

x1

∂FVx
∂x

dx+
∫ y2

y1

∂FVy
∂y

dy +
∫ z2

z1

∂FVz
∂z

dz = 0, (3.59)

where FV is fluid volume flux defined by

FVx =
∫ y2

y1

dy

∫ z2

z1

dzhyu, (3.60)

FVy =
∫ x2

x1

dx

∫ z2

z1

dzhxv, (3.61)

FVz =
∫ x2

x1

dx

∫ y2

y1

dyhxhyw. (3.62)
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Note that the limits of integration for x and y are all constant values.
The discretized representation of the z coordinate continuity equation is obtained from (3.59) as

(FVxE − FVxL) + (FVyN − FVyL) + (FVzL − FVzD) = 0, (3.63)

where the discretized form of fluid volume flux is obtained from (3.60)–(3.62) with applying ut and vt defined
in (3.19) and (3.20):

FVxL =
ΔyL

2
(
hVyWu

t
WΔzVW + hVySWu

t
SWΔzVSW

)
, (3.64)

FVyL =
Δx
2
(
hVxSv

t
SΔzVS + hVxSW v

t
SWΔzVSW

)
, (3.65)

FVzL = hTxLh
T
yLw

t
LΔxΔyL, (3.66)

where wt is T-point vertical velocity used for tracer advection, and is obtained by solving (3.63).
The above consideration implicitly defines volume of a T-point-centered grid box. The volume ΔV TL of

the grid box containing TL is given by

ΔV TL =
∫ x2

x1

dx

∫ y2

y1

dy

∫ z2

z1

dzhxhy = hTxLh
T
yLΔxΔyLΔzL. (3.67)

Then, for instance, volume integral of a T-point variable S is (must be) calculated by

∑
L

SLΔV TL . (3.68)

The discretized representation of the σ coordinate continuity equation (3.23) is almost identical to the
above. The only fundamental difference is the ∂η/∂t term, and the way to include it is obvious. By
regarding −zBΔσ as Δz and (η − zB)ω as w, expressions for the other terms becomes actually identical to
the z coordinate case.

3.3.3 Tracer Equations

Only the prognostic equation for salinity is described here, again. Discretization of the tracer equations are
formulated in a consistent way with that of the continuity equation. Otherwise, conservation of tracer is not
guaranteed. Volume integral of the z coordinate salinity equation over a grid box is achieved by a procedure
similar to the case of the continuity equation, and it results in

∂SL
∂t

ΔV TL =
∫ x2

x1

∂FSx
∂x

dx+
∫ y2

y1

∂FSy
∂y

dy +
∫ z2

z1

∂FSz
∂z

dz. (3.69)

Note that the current definition of FS is different from that in (3.27), and that the sign is reversed compared
with usual definition of fluxes. The salinity flux FS is decomposed into an advection part FSa and a diffusion
part FSd, and the advection part is expressed by

FSax = −
∫ y2

y1

dy

∫ z2

z1

dzhyuS, (3.70)

FSay = −
∫ x2

x1

dx

∫ z2

z1

dzhxvS, (3.71)

FSaz = −
∫ x2

x1

dx

∫ y2

y1

dyhxhywS. (3.72)
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Expression for the diffusion part depends on its formulation. When it takes the form of the simplest Laplacian
diffusion (1.33),

FSdx =
∫ y2

y1

dy

∫ z2

z1

dzKH
hy
hx

∂S

∂x
, (3.73)

FSdy =
∫ x2

x1

dx

∫ z2

z1

dzKH
hx
hy

∂S

∂y
, (3.74)

FSdz =
∫ x2

x1

dx

∫ y2

y1

dyhxhyKV
∂S

∂z
. (3.75)

The discretized advective flux is represented by the product of the volume flux and the value of tracer at
the point where the flux is defined (on the corresponding face of the considered grid box). Using (3.64)–(3.66),

FSaxL = −F VxLSw, FSayL = −F VyLSs, FSazL = −F VzLSu, (3.76)

where the subscripts w, s and u denote the positions where the value of S is estimated: western, southern
and upper face, respectively, of the grid box containing SL. These values of S at grid faces must, of course,
be represented by grid point values of S. The simplest and lowest-order way of representing these grid-face
values is the upstream differencing method, which means

FVxLSw =
FVxL + |FVxL|

2
SW +

FVxL − |FVxL|
2

SL, (3.77)

FVyLSs =
FVyL + |FVyL|

2
SS +

FVyL − |FVyL|
2

SL, (3.78)

FVzLSu =
FVzL + |FVzL|

2
SL +

FVzL − |FVzL|
2

SU , (3.79)

In usual application of COCO, a higher-order representation is adopted, which will be described in chapter
4.

Let ΔATw, ΔATs and ΔATu denote the effective area of the western, southern and upper, respectively, faces
of the grid box containing SL. The components of fluxes of T-point variables labeled by L are defined on
these faces. The term “effective” means that the area below the ocean floor is excluded, so they are defined
by

ΔATw =
hVyW + hVySW

2
ΔyL × min(ΔzL,ΔzW ), (3.80)

ΔATs =
hVxS + hVySW

2
Δx× min(ΔzL,ΔzS), (3.81)

ΔATu = hTxLh
T
yLΔxΔyL. (3.82)

The discretized diffusive flux for the case of the Laplacian diffusion is represented by the product of the
grid-face area and the tracer gradient estimated on the face. By adopting the simplest, still second-order
precision, way of representing the tracer gradient, the diffusive flux is expressed as

FSdx = ΔATwKH
2

hTxL + hTxW

SL − SW
Δx

, (3.83)

FSdy = ΔATs KH
2

hTyL + hTyS

SL − SS
Δy′S

, (3.84)

FSdz = ΔATuKV
SU − SL

Δz′L
. (3.85)
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Note that the diffusion coefficients are allowed to spatially vary. In this case, their values are defined at the
same points as the tracer flux.

The final expression for the spatially discretized tracer equation is

∂SL
∂t

=
(FSxE − FSxL) + (FSyN − FSyL) + (FSzL − FSzD)

ΔV TL
. (3.86)

As in the case of the continuity equation, the spatial discretization of the tracer equations in the σ
coordinate (3.26) is identical to that in the z coordinate when −zBΔσ is regarded as Δz and (η − zB)ω as
w.

3.3.4 Internal Mode Equations

In the discretized representation of the tracer equations, the tracer quantities are advected by “tracer advec-
tion velocity,” whose components are represented by ut, vt and wt (ωt). Since the tracer advection velocity
is defined such that it is perfectly consistent with the continuity equation, its application to the tracer
equations guarantees conservation of the tracer quantities under the advection process. The same concept
is introduced to the discretized representation of the momentum equations. Its basic idea is suggested by
Webb [1995 ].

Consider a grid box which contains the V-point labeled by L at its center. Its vertices are the eight
surrounding WT-points. “Momentum advection velocity,” whose components are represented by ua, va and
wa, is defined on each face of the grid box, where momentum flux is also defined. To retain consistency with
the continuity equation, definition of the momentum advection velocity should be based on area weighted
average of fluid volume transport for T-point-centered boxes. In addition, its horizontal components are
multiplied by the grid thickness for the convenience of later use. Its exact representation in the z coordinate
region is

uaL =

(utLh
V
yLΔzVL + utWh

V
yWΔzVW + utNh

V
yNΔzVN + utNWh

V
yNWΔzVNW )ΔyN

+(utLh
V
yLΔzVL + utWh

V
yWΔzVW + utSh

V
ySΔzVS + utSWh

V
ySWΔzVSW )ΔyL

(hVyL + hVyW + hVyN + hVyNW )ΔyN + (hVyL + hVyW + hVyS + hVySW )ΔyL
, (3.87)

vaL =

2vtLh
V
xLΔzVL + 2vtSh

V
xSΔzVS

+vtEh
V
xEΔzVE + vtSEh

V
xSEΔzVSE + vtWh

V
xWΔzVW + vtSWh

V
xSWΔzVSW

2hVxL + 2hVxS + hVxE + hVxSE + hVxW + hVxSW
, (3.88)

waL =
(wtLh

T
xLh

T
yL + wtEh

T
xEh

T
yE)ΔyL + (wtNh

T
xNh

T
yN + wtNEh

T
xNEh

T
yNE)ΔyN

(hTxLh
T
yL + hTxEh

T
yE)ΔyL + (hTxNh

T
yN + hTxNEh

T
yNE)ΔyN

. (3.89)

In the actual application, they are approximated by

uaL =

(utLΔzVL + utWΔzVW + utNΔzVN + utNWΔzVNW )ΔyN
+(utLΔzVL + utWΔzVW + utSΔzVS + utSWΔzVSW )ΔyL

8Δy′L
, (3.90)

vaL =
2vtLΔzVL + 2vtSΔzVS + vtEΔzVE + vtSEΔzVSE + vtWΔzVW + vtSWΔzVSW

8
, (3.91)

waL =
(wtL + wtE)ΔyL + (wtN + wtNE)ΔyN

4Δy′L
, (3.92)

assuming that difference of the metrics between adjacent grids is small.
Let us first consider only the flux convergence part of the momentum equation (1.1):

∂u

∂t
= − 1

hxhy

[
∂

∂x
(hyuu) +

∂

∂y
(hxvu)

]
− ∂

∂z
(wu). (3.93)
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Similarly to the case of the tracer equations, its volume integral yields

∂uL
∂t

ΔV VL =
∫ x2

x1

∂Fux
∂x

dx+
∫ y2

y1

∂Fuy
∂y

dy +
∫ z2

z1

∂Fuz
∂z

dz, (3.94)

where

Fux = −
∫ y2

y1

dy

∫ z2

z1

dzhyuu, (3.95)

Fuy = −
∫ x2

x1

dx

∫ z2

z1

dzhxvu, (3.96)

Fuz = −
∫ x2

x1

dx

∫ y2

y1

dyhxhywu, (3.97)

ΔV VL = hVxLh
V
yLΔxΔy′LΔzVL . (3.98)

Note that the limits of integration are for the boundaries of the grid box centered at the V-point labeled by
L. Grid point values of the flux Fu are represented by

FuxL = −Δy′Lu
a
L(hyu)w, (3.99)

FuyL = −ΔxvaL(hxu)s, (3.100)

FuzL = −hVxLhVyLΔxΔy′Lw
a
Luu, (3.101)

where the subscripts w, s and u denote the position of the western, southern and upper, respectively, faces
of the considered grid box. These grid-face values are simply represented by the average of the two nearest
grid point values on the both sides of the face:

(hyu)w =
hVyLuL + hVyWuW

2
, (3.102)

(hxu)s =
hVxLuL + hVxSuS

2
, (3.103)

uu =
uL + uU

2
. (3.104)

When the grid spacing is invariable, these expressions give the second-order precision (centered-in-space
differencing scheme). Note that it is more relevant to couple the metrics with the momentum advection
velocity rather than with the “advected” velocity, as in the case of the tracer advection velocity. In that
case, the momentum advection velocity multiplied by the corresponding coordinate metric (i.e., (hyu)aL,
(hxv)aL and (hxhyw)aL) should be defined by (3.87)–(3.89) with replacing metrics in the denominators by
unity. In the current expression, coding simplicity (and reduction of calculation) is preferred at the cost of
relevance (and exactness). The final discretized representation of (3.93) is

∂uL
∂t

=
(FuxE − FuxL) + (FuyN − FuyL) + (FuzL − FuzD)

ΔV VL
. (3.105)

An identical procedure is applicable to spatially discretizing (1.2). The discretized representation of

∂v

∂t
= − 1

hxhy

[
∂

∂x
(hyuv) +

∂

∂y
(hxvv)

]
− ∂

∂z
(wv) (3.106)

becomes
∂vL
∂t

=
(F vxE − F vxL) + (F vyN − F vyL) + (F vzL − F vzD)

ΔV VL
, (3.107)
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where

F vxL = −Δy′Lu
a
L(hyv)w , (3.108)

F vyL = −ΔxvaL(hxv)s, (3.109)

F vzL = −hVxLhVyLΔxΔy′Lw
a
Lvu, (3.110)

and

(hyv)w =
hVyLvL + hVyW vW

2
, (3.111)

(hxv)s =
hVxLvL + hVxSvS

2
, (3.112)

vu =
vL + vU

2
. (3.113)

Other terms of (1.1) and (1.2) are restored now. The metric and Coriolis terms are estimated simply by
using uL and vL. Pressure is a T-point variable, and it is determined from sea level pressure Pη, sea level η,
and density ρ, all of which are T-point variables. Horizontal gradient of a T-point variable ψ at the V-point
labeled by L is estimated by using the four surrounding grid point values of ψ as(

1
hx

∂ψ

∂x

)
L

=
ψNE + ψE − ψN − ψL

2hVxLΔx
, (3.114)(

1
hy

∂ψ

∂y

)
L

=
ψNE + ψN − ψE − ψL

2hVyLΔy′L
. (3.115)

Vertical integration of horizontal density gradient needs to be calculated. For the σ coordinate region,[
(η − zB)

∫ 1

σ

∂ρ

∂x
dσ′
]
L

=
[
(ηL + ηE)ΔyL + (ηN + ηNE)ΔyN

4Δy′L
− zB

]
L

×
⎡
⎣ ∑
l=U,UU,...

(
∂ρ

∂x

)
l

Δσl +
1
2

(
∂ρ

∂x

)
L

ΔσL

⎤
⎦ ,(3.116)

where the sum for the index l is taken from the top to the considered level. For the z coordinate region,(∫ zB

z

∂ρ

∂x
dz′
)
L

=
∑

l=U,UU,...

(
∂ρ

∂x

)
l

ΔzVl +
1
2

(
∂ρ

∂x

)
L

ΔzVL , (3.117)

where the sum for the index l is taken from the top of the z coordinate region to the considered level. The
corresponding y derivative terms are represented by simply replacing x by y.

In the Laplacian viscosity terms (1.34), (1.35), it is convenient to divide vertical components (i.e., whose
subscripts include z) of the tensors into two parts for the sake of discretization:

τxz = τ ′xz + τ ′′xz, τyz = τ ′yz + τ ′′yz, (3.118)

where

τ ′xz = AV
∂u

∂z
, τ ′′xz = −∂AV

∂z
u−AV

u

a
, (3.119)

τ ′yz = AV
∂v

∂z
, τ ′′yz = −∂AV

∂z
v −AV

v

a
. (3.120)

The last two terms of (1.34) and (1.35) are modified accordingly as

Vu =
1

hxhy

[
1
hy

∂

∂x

(
h2
y

τxx − τyy
2

)
+

1
hx

∂

∂y
(h2
xτxy)

]
+
∂τ ′xz
∂z

+
τ ′′xz
a
, (3.121)

Vv =
1

hxhy

[
1
hy

∂

∂x
(h2
yτxy) +

1
hx

∂

∂y

(
h2
x

τyy − τxx
2

)]
+
∂τ ′yz
∂z

+
τ ′′yz
a
. (3.122)
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These viscosity terms are, of course, defined at V-points.
One of the most convenient ways of discretizing horizontal components of the stress tensor is to define

them at T-points. Accordingly, it is natural to define horizontal components of strain rate tensor (see section
1.2.2 for its definition) also at T-points, where velocity at T-points is estimated simply by the average of
the four surrounding V-point values, and the horizontal gradient is estimated by the simplest form using the
same four-point values. The horizontal divergence term is calculated by the four surrounding T-point values
of the horizontal stress tensor components. Although this method is simple and symmetric, it is prone to
generate checker-board noise, especially for the case of spatially constant horizontal viscosity. Consider an
idealized situation where hx = hy = const and Δx = Δy = const. For brevity of expression, the metrics
are set to unity, and the grid width is set to 1/4, though the choice for these constants does not affect the
discussion below. In this case,

εxxL = uL + uS − uW − uSW , (3.123)

εxxE = uE + uSE − uL − uS, (3.124)

εxxN = uN + uL − uNW − uW , (3.125)

εxxNE = uNE + uE − uN − uL, (3.126)

εyyL = vL + vS − vW − vSW , (3.127)

εyyE = vE + vSE − vL − vS , (3.128)

εyyN = vN + vL − vNW − vW , (3.129)

εyyNE = vNE + vE − vN − vL, (3.130)

2εxyL = uL + uW − uS − uSW + vL + vS − vW − vSW , (3.131)

2εxyE = uE + uL − uSE − uS + vE + vSE − vL − vS , (3.132)

2εxyN = uN + uNW − uL − uW + vN + vL − vNW − vW , (3.133)

2εxyNE = uNE + uN − uE − uL + vNE + vE − vN − vL. (3.134)

When the horizontal viscosity coefficient AH is also constant, the horizontal divergence term of VuL becomes

AH(uNE + uSE + uNW + uSW − 4uL). (3.135)

Thus, there is no direct coupling between uL and its four nearest grid point values. For the case of the
Laplacian horizontal viscosity with a prescribed (i.e., does not depend on velocity) coefficient, therefore, the
horizontal components of the strain rate tensor are defined by

(εxx − εyy)uL =
2

hVxL + hVxW

uL − uW
Δx

+
hVxyL + hVxyW

2
vL + vW

2

− 2
hVyL + hVyW

vN + vNW − vS − vSW
2(ΔyL + ΔyN )

− hVyxL + hVyxW
2

uL + uW
2

, (3.136)

2(εxy)uL =
2

hVyL + hVyS

uL − uS
ΔyL

− hVyxL + hVyxS
2

vL + vS
2

+
2

hVxL + hVxS

vE + vSE − vW − vSW
4Δx

− hVxyL + hVxyS
2

uL + uS
2

, (3.137)

(εyy − εxx)vL =
2

hVyL + hVyS

vL − vS
ΔyL

+
hVyxL + hVyxS

2
uL + uS

2
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− 2
hVxL + hVxS

uE + uSE − uW − uSW
4Δx

− hVxyL + hVxyS
2

vL + vS
2

, (3.138)

2(εxy)vL =
2

hVxL + hVxW

vL − vW
Δx

− hVyxL + hVyxW
2

vL + vW
2

(3.139)

+
2

hVyL + hVyW

uN + uNW − uS − uSW
2(ΔyL + ΔyN )

− hVxyL + hVxyW
2

uL + uW
2

, (3.140)

where (εxx − εyy)uL and (εxy)uL are defined at the same points as FuxL and FuyL and used in VuL, while
(εyy − εxx)vL and (εxy)vL are defined at the same points as F vyL and F vxL and used in VvL. Horizotnal
components of the stress tensor are defined at the same points as the corresponding components of the
strain rate tensor. Then, the horizontal part of the viscosity terms are represented by{

1
hxhy

[
1
hy

∂

∂x

(
h2
y

τxx − τyy
2

)
+

1
hx

∂

∂y
(h2
xτxy)

]}
L

=
1

hVxLh
V
yL

⎧⎨
⎩ 1
hVyLΔx

⎡
⎣(hVyE + hVyL

2

)2
(τxx − τyy)uE

2
−
(
hVyL + hVyW

2

)2
(τxx − τyy)uL

2

⎤
⎦

+
1

hVxLΔy′L

[(
hVxN + hVxL

2

)2

(τxy)uN −
(
hVxL + hVxS

2

)2

(τxy)uL

]}
, (3.141)

{
1

hxhy

[
1
hy

∂

∂x
(h2
yτxy) +

1
hx

∂

∂y

(
h2
x

τyy − τxx
2

)]}
L

=
1

hVxLh
V
yL

⎧⎨
⎩ 1
hVyLΔx

⎡
⎣
(
hVyE + hVyL

2

)2

(τxy)vE −
(
hVyL + hVyW

2

)2

(τxy)vL

⎤
⎦

+
1

hVxLΔy′L

[(
hVxN + hVxL

2

)2 (τyy − τxx)vN
2

−
(
hVxL + hVxS

2

)2 (τyy − τxx)vL
2

]}
,(3.142)

where

(τxx − τyy)u = 2AH(εxx − εyy)u, (3.143)

(τxy)u = 2AH(εxy)u (3.144)

(τyy − τxx)v = 2AH(εyy − εxx)v, (3.145)

(τxy)v = 2AH(εxy)v. (3.146)

For the vertical components of the stress tensor, it is convenient to define τ ′xz τ
′
yz at WV-points, and τ ′′xz

and τ ′′yz at V-points. Their definition is straightforward:

τ ′xzL = (AV )L
uU − uL

Δz′L
, (3.147)

τ ′yzL = (AV )L
vU − vL

Δz′L
, (3.148)

τ ′′xzL = − (AV )L − (AV )D
ΔzL

uL − (AV )L + (AV )D
2

uL
a
, (3.149)

τ ′′yzL = − (AV )L − (AV )D
ΔzL

vL − (AV )L + (AV )D
2

vL
a
. (3.150)

The vertical part of the viscosity temrs are(
∂τ ′xz
∂z

+
τ ′′xz
a

)
L

=
τ ′xzL − τ ′xzD

ΔzL
+
τ ′′xzL
a

, (3.151)
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(
∂τ ′yz
∂z

+
τ ′′yz
a

)
L

=
τ ′yzL − τ ′yzD

ΔzL
+
τ ′′yzL
a

(3.152)

The advection terms of the σ coordinate momentum equations (1.18) and (1.19) are represented by the
advection form. In their calculation, however, a pseudo-flux form3 is used:

u

hx

∂u

∂x
+

v

hy

∂u

∂y
+ ω

∂u

∂σ
=

1
hxhy

[
∂

∂x
(hyuu) +

∂

∂y
(hxvu)

]
+

∂

∂σ
(ωu) − u div v, (3.153)

u

hx

∂v

∂x
+

v

hy

∂v

∂y
+ ω

∂v

∂σ
=

1
hxhy

[
∂

∂x
(hyuv) +

∂

∂y
(hxvv)

]
+

∂

∂σ
(ωv) − v divv, (3.154)

where div v is defined by

div v =
1

hxhy

[
∂

∂x
(hyu) +

∂

∂y
(hxv)

]
+
∂ω

∂σ
. (3.155)

Excluding the term of divv, the right hand sides of (3.153) and (3.154) take the same form as the flux
convergence terms of (3.93) and (3.106), respectively. So, they are discretized in the same way as the
previous, by just replacing Δz by Δσ and w by ω. Since Δσ does not horizontally vary, expressions for
the horizontal components of the momentum advection velocity (3.90) and (3.91) are much simplified. The
discretized representation of divv is given by

1
hVxLh

V
yL

[
(hVyE + hVyL)uaE + (hVyL + hVyW )uaL

2Δx
+

(hVxN + hVxL)vaN + (hVxL + hVxS)vaL
2Δy′L

]
+
ωaL − ωaD

ΔσL
. (3.156)

The other terms of the σ coordinate momentum equations are discretized in the same manner as in the z
coordinate case.

Grid point values of horizontal velocity components are defined by

unL =
UnL
HV
L

+ u′nL , (3.157)

vnL =
V nL
HV
L

+ v′nL , (3.158)

where (1.92) and (1.93) are used with setting η to zero.

3.3.5 External Mode Equations

Spatial discretization of the sea level equation (1.27) is achieved based on the same consideration as for the
continuity equation. Its horizontal area integral over the grid box containing ηL is represented as

∂ηL
∂t

ΔxΔyLhTxLh
T
yL = −(F ηxE − F ηxL) − (F ηyN − F ηyL), (3.159)

where

F ηxL =
hVyWUW + hVySWUSW

2
ΔyL, (3.160)

F ηyL =
hVxSVW + hVxSWVSW

2
Δx (3.161)

are equivalent to vertical integral of the fluid volume flux (3.64) and (3.65).

3The true flux form includes contribution of (η − zB)
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The discretized representation for (1.80) and (1.81) is

∂UL
∂t

− fLVL = − HV
L

ρ0hVxL

[
g

(
∂η

∂x

)
L

+
(
∂Pη
∂x

)
L

]
+X ′

L + (VU )L, (3.162)

∂VL
∂t

+ fLUL = − HV
L

ρ0hVyL

[
g

(
∂η

∂y

)
L

+
(
∂Pη
∂y

)
L

]
+ Y ′

L + (VV )L, (3.163)

where fL is the value of the Coriolis parameter at the V-point labeled by L. Explicit representation for the
horizontal gradient terms is given by (3.114) and (3.115). The terms X ′

L and Y ′
L are obtained by vertically

summing up the terms appearing in the internal mode equations. The viscosity term is represented by the
same manner as for the internal mode equations.

The system of the discretized equations (3.159), (3.162) and (3.163) does not contain a mechanism
eliminating checker-board noise in sea level. For the sake of numerical stability, therefore, the Laplacian
horizontal diffusion term is added to the sea level equation. So, the equation actually solved is

∂η

∂t
= − 1

hxhy

[
∂

∂x
(hyU) +

∂

∂y
(hxV )

]
+

1
hxhy

[
∂

∂x

(
Kη

hy
hx

∂η

∂x

)
+

∂

∂y

(
Kη

hx
hy

∂η

∂y

)]
, (3.164)

where Kη is the coefficient for sea level diffusion. The diffusion term is temporally discretized by the forward-
in-time method, and the method of its spatial discretization is the same as that of the tracer diffusion term.
Let F ηd denote diffusive flux of sea level. The equation (3.159) now becomes

∂ηL
∂t

ΔxΔyLhTxLh
T
yL = −(F ηxE − F ηxL) − (F ηyN − F ηyL) + (F ηdxE − F ηdxL) + (F ηdyN − F ηdyL), (3.165)

where

F ηdxL = Kη

hVyW + hVySW
hTxL + hTxW

ηL − ηW
Δx

ΔyL, (3.166)

F ηdyL = Kη
hVxS + hVxSW
hTyL + hTyS

ηL − ηS
Δy′S

Δx. (3.167)

Changes of sea level must accompany redistribution of the tracer quantities in the σ coordinate region.
Correction for the tracer S is represented by

∂

∂t
[(ηL − zB)SL]hTxLh

T
yLΔxΔyL = (FScxE − FScxL) + (FScyN − FScyL), (3.168)

where the correction flux FSc is assumed to transport the tracer in the down-gradient direction of sea level:

FScxL =
F ηdxL + |F ηdxL|

2
SL +

F ηdxL − |F ηdxL|
2

SW , (3.169)

FScyL =
F ηdyL + |F ηdyL|

2
SL +

F ηdyL − |F ηdyL|
2

SS . (3.170)

3.4 Treatment of Boundary

3.4.1 Cyclic Boundary Condition

The model domain is assumed to cyclically connected in the x direction. It is realized in the model by putting
extra grids to the east (west) of the eastern (western) end of the domain. In the standard configuration of
COCO, there are two extra columns of grids both to the west and east. The number of extra grids can easily
be changed in the model. The values of variables at these extra grid points are copied from the corresponding
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western end eastern end

A B Y Z A' B'Y' Z'

Figure 3.6: Grid configuration for the cyclic boundary in the x direction. The values at the grids labeled by
the primed symbols are copied from the grids of the respective non-primed symbols.

grids so that the cyclic condition is realized (see Figure 3.6). When it is intended not to apply the cyclic
boundary condition, there should at least one coastline connecting the northern and southern ends of the
domain.

Although there is no need to cyclically connect the domain in the y direction, there also are extra grids
to the north (south) of the northern (southern) end of the model domain. When the model is parallelized,
information from other processors is passed on to these extra grids.

3.4.2 Masking Array and Boundary Condition

In order to exclude land grid points from calculation, masking arrays are defined in the model. Let MT and
MV denote masking arrays for T-points and V-points, respectively. The grid point value of MT takes zero
when the T-point-centered grid box labeled by L is land, and is unity otherwise:

MT
L =

{
0 for land grids
1 for ocean grids . (3.171)

For the grids partially occupied by land, its value is also unity. MV
L is zero where the corresponding V-point

is land or on coast, and is unity elsewhere. Its values are defined by

MV
L = MT

L ·MT
E ·MT

N ·MT
NE . (3.172)

Masking arrays for fluxes are also defined to adequately realize zero-flux boundary conditions. Let MFT
x ,

MFT
y and MFT

z denote masking arrays for the fluxes of T-point variables in the x, y and z directions,
respectively. Their grid point values are defined by

MFT
xL = MT

L ·MT
W , (3.173)

MFT
yL = MT

L ·MT
S , (3.174)

MFT
zL = MT

L ·MT
U . (3.175)

For the fluxes of V-point variables, masking arrays are defined by

MFV
xL = MT

L ·MT
N , (3.176)

MFV
yL = MT

L ·MT
E , (3.177)

MFV
zL = [1 − (1 −MT

L )(1 −MT
E )(1 −MT

N )(1 −MT
NE)] ·MT

U ·MT
UE ·MT

UN ·MT
UNE . (3.178)
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The boundary conditions for temperature and salinity on solid boundaries (1.56) and (1.57) are satisfied
by setting their flux in the direction normal to the boundaries to zero. Tracer fluxes are calculated for all the
grids regardless of land or sea, including the extra grids for the cyclic boundary. Then, they are multiplied
by the above-defined flux masking arrays for T-point variables. Note that the actual definition of MFT

x and
MFT
y in the model is slightly different from the above. They are further multiplied by the grid thickness for

the convenience of actual use:

MFT
xL = MT

L ·MT
W × min(ΔzL,ΔzW ), (3.179)

MFT
yL = MT

L ·MT
S × min(ΔzL,ΔzS). (3.180)

Note that the grid thickness for the σ coordinate region is defined by ΔzL = −zBΔσL. These masking arrays
are used only for the calculation of diffusive tracer fluxes. Advective tracer fluxes need not to be multiplied
by the masking arrays, as velocity is always set to zero on land points.

The no-slip boundary conditions (1.44) and (1.45) are realized by simply multiplying u and v by MV .
Then, advective momentum fluxes on boundaries become zero without taking a special care, as in the case of
advective tracer fluxes. The masking arrays for V-point variable fluxes are used only in viscosity calculation.
As in the case of the masking arrays for T-point variable fluxes, the actual definition of MFV

x and MFV
y in

the model is multiplied by the grid thickness:

MFV
xL = MT

L ·MT
N × min(ΔzVL ,Δz

V
W ), (3.181)

MFV
yL = MT

L ·MT
E × min(ΔzVL ,Δz

V
S ). (3.182)

Vertical velocity at WT-points on the ocean floor is always regarded as zero. See the comment on (3.58).
At the sea surface, ω is identically zero by definition. Note that it is not explicitly used anywhere. Vertical
velocity at WV-points is naturally derived by (3.92). It takes nonzero values at the corner of topographical
steps (see Figure 3.2: the symbol W is placed only where vertical velocity could take nonzero values), and
the vertical momentum flux is explicitly calculated for those grids.



Chapter 4

Numerical Algorithm and Physical
Parameterization in Standard Use

4.1 Tracer Advection

A third-order, upstream weighted algorithm is the standard choice for tracer advection in COCO. Two-
dimensional horizontal advection and one-dimensional vertical advection are separately treated. The algo-
rithm for vertical advection is the Quadratic Upstream Interpolation for Convective Kinematics with Esti-
mated Streaming Terms (QUICKEST) of Leonard [1979 ]. Its multidimensional extension, which is called
the Uniformly Third-Order Polynomial Interpolation Algorithm (UTOPIA) [Leonard et al., 1993, 1994 ], is
used for horizontal advection.

UTOPIA can be formulated in three-dimension, but fully three-dimensional UTOPIA is far more costly
than the combination of vertical QUICKEST and horizontal UTOPIA. In addition, coding of three-
dimensional UTOPIA becomes far more complicated than that of two-dimensional UTOPIA. There is a way,
called COSMIC [Leonard et al., 1996 ], to realize an algorithm equivalent to three-dimensional UTOPIA by
repeatedly applying QUICKEST. Although its coding is very simple, its computational cost is no less than
three-dimensional UTOPIA. The separation of vertical and horizontal advection means that the effect of
slantwise tracer transport is neglected. As long as horizontal-vertical grid aspect ratio (and also the ratio
of horizontal advection speed to vertical advection speed) is much larger than unity, that effect is actually
negligible.

4.1.1 QUICKEST

Let us consider finite difference discretization of a flux-form, one-dimensional advection equation for tracer
ψ:

∂ψ

∂t
+

∂

∂z
(wψ) = 0, (4.1)

When the equation is temporally differenced by use of the forward-in-time scheme, flux-form spatial differ-
encing yields

ψn+1
L − ψnL

Δt
=
FψnL − FψnD

ΔzL
. (4.2)

See Figures 3.2, 3.3 and 3.5 for the arrangement of grid point values.

43
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Integration of ψn over one spatial grid yields∫ zL+ΔzL/2

zL−ΔzL/2

ψndz

=
∫ zL+ΔzL/2

zL−ΔzL/2

[
ψnL + (z − zL)ψnzL +

(z − zL)2

2
ψnzzL +

(z − zL)3

6
ψnzzzL + · · ·

]
dz

= ΔzLψnL +
Δz3

L

24
ψnzzL +O(Δz5), (4.3)

where the subscript z indicates spatial differentiation. Thus, integration of ∂ψ/∂t over one time level and
one spatial grid becomes∫ tn+1

tn
dt

∫ zL+ΔzL/2

zL−ΔzL/2

dz
∂ψ

∂t
=

∫ zL+ΔzL/2

zL−ΔzL/2

dz(ψn+1 − ψn)

= ΔzL

[
(ψn+1
L − ψnL) +

Δz2
L

24
(ψn+1
zzL − ψnzzL) +O(Δz4)

]
. (4.4)

It holds that

ψn+1
zzL − ψnzzL = Δt

(
∂ψzz
∂t

)n
L

+O(Δt2)

= −Δt
{
∂2

∂z2

[
∂

∂z
(wψ)

]}n
L

+O(Δt2)

= − Δt
ΔzL

(wnLψ
n
zzu − wnDψ

n
zzd) +O(Δt2) +O(wΔt), (4.5)

where the subscripts u and d denote the positions of upper and lower grid boundaries, respectively, i.e., ψzzu
(ψzzd) is defined at the same point as wL (wD). It is assumed that the order of accuracy for the estimation of
ψzz is O(Δz), which yields error of the order of O(wΔt) in the calculation above. Therefore, the integration
of ∂ψ/∂t is represented by

∫ tn+1

tn
dt

∫ zL+ΔzL/2

zL−ΔzL/2

dz
∂ψ

∂t

= ΔzL

[
(ψn+1
L − ψnL) +

ΔtΔzL
24

(wnLψ
n
zzu − wnDψ

n
zzd)
]

+O(wΔtΔz2) +O(Δt2Δz3) +O(Δz5). (4.6)

Here, O(wΔtΔz2) ∼ O(Δz3) as the Courant number wΔt/Δz is chosen to be less than unity. On the other
hand, integration of ∂(wψ)/∂z over one time level and one spatial grid is represented by

∫ tn+1

tn
dt

∫ zL+ΔzL/2

zL−ΔzL/2

dz
∂

∂z
(wψ) =

∫ tn+1

tn
dt(wLψu − wDψd)

= Δt
(
wLψu

n − wDψd
n
)

+O(Δz3), (4.7)

where the time average uLψu
n

is estimated such that this representation guarantees the third-order accuracy,
whose method is described later. Therefore, integration of (4.1) over one time level and one spatial grid
results in

ψn+1
L = ψnL − Δt

ΔzL

[(
wLψu

n − wDψd
n
)

− Δz2
L

24
(wnLψ

n
zzu − wnDψ

n
zzd)
]

+O(Δz3), (4.8)
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on condition that ψzz is estimated with an appropriate accuracy. It means that the finite differenced
advection equation (4.2) has the third-order accuracy when the flux is estimated by

FψnL = −wLψun +
Δz2

L

24
wnLψ

n
zzu. (4.9)

When w is constant or its variation is negligible within the accuracy now under consideration, it is represented
by

FnL = −wnL
(
ψ̄nu − Δz2

L

24
ψnzzu

)
≡ −wnLψ̃nu . (4.10)

This case is considered below.
The value of ψn around z = zu (the position where ψu is defined) is here approximated by a quadratic

expression:
ψn = c0 + c1(z − zu) + c2(z − zu)2. (4.11)

The coefficients c0, c1, and c2 are determined from the relationships

ψnD = c0 − c1

(
ΔzL +

ΔzD
2

)
+ c2

(
ΔzL +

ΔzD
2

)2

, (4.12)

ψnL = c0 − c1
ΔzL

2
+ c2

Δz2
L

4
, (4.13)

ψnU = c0 + c1
ΔzU

2
+ c2

Δz2
U

4
, (4.14)

ψnUU = c0 + c1

(
ΔzU +

ΔzUU
2

)
+ c2

(
ΔzU +

ΔzUU
2

)2

. (4.15)

The order of accuracy for these estimates is O(Δz3). Only three of them are used to determine the coefficients,
and the choice depends on the sign of wnL. That is, the expressions for the adjacent points, ψnL and ψnU , and
either of ψnD or ψnUU in the upstream is used. Therefore, when wnL is positive,

c0 =
ΔzUψnL + ΔzLψnU

2Δz′L
− ΔzLΔzU

4
c2,

c1 =
ψnU − ψnL

Δz′L
+

ΔzL − ΔzU
2

c2,

c2 =
1

Δz′L + Δz′D

(
ψnD − ψnL

Δz′L
− ψnL − ψnU

Δz′D

)
. (4.16)

When wnL is negative,

c0 =
ΔzUψnL + ΔzLψnU

2Δz′L
− ΔzLΔzU

4
c2,

c1 =
ψnU − ψnL

Δz′L
+

ΔzL − ΔzU
2

c2,

c2 =
1

Δz′L + Δz′U

(
ψnL − ψnU

Δz′L
− ψnU − ψnUU

Δz′U

)
. (4.17)

The instantaneous value of ψnu coincides with c0 derived above. Since the quantity ψ is advected, time
average of ψnu over the time interval Δt is estimated by the spatial average of ψn over the region [zu−wnLΔt, zu]
for positive wnL and the region [zu, zu − wnLΔt] for negative wnL. Regardless of the sign of wnL, it becomes

ψ̄nu =
1

wnLΔt

∫ zu

zu−wn
L
Δt

ψndz

= c0 − c1
wnLΔt

2
+ c2

(wnLΔt)2

3
. (4.18)
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This estimate retains the accuracy of O(Δz3), as the estimate of ψn has that accuracy over the region of
integration. Since ψnzzu equals to 2c2 and its accuracy is O(Δz), the expression

ψ̃nu = c0 − c1
wnLΔt

2
+ c2

(
(wnLΔt)2

3
− Δz2

L

12

)
(4.19)

has the accuracy of O(Δz3). Note that when the temporal variation of ψ within the integration time interval
is neglected, i.e., when ψ̃nu is estimated by c0, the scheme is called QUICK. QUICK does not guarantee the
third-order accuracy for the finite differenced expression of (4.1). See Leonard [1979 ] for its detail.

4.1.2 Flux Limiter for One-Dimensional Advection

The quadratic interpolation (4.11) could estimate a false minimum or maximum, i.e., the estimated ψu could
become smaller (larger) than both of ψL and ψU . Such an overshooting estimate violates the monotonicity
preserving nature1 of advection. The simplest way of avoiding such a false minimum or maximum is bounding
ψu by

min(ψL, ψU ) ≤ ψu ≤ max(ψL, ψU ). (4.20)

However, this simplest way could also fail from another respect, as the estimated ψu could become the
downstream value. The downstream advection scheme with the forward-in-time method inevitably leads to
numerical instability.

The method of limiting the estimate of ψu adopted here is one devised by Leonard [1991 ]. Here we first
describe the case of wL > 0. Let δ and γ be defined by

δ =
(
ψU − ψL

Δz′L
+
ψL − ψD

Δz′D

)
ΔzL, (4.21)

γ =
ψU − ψL

Δz′L
− ψL − ψD

Δz′D
. (4.22)

The limiting criterion is described as follows:

ψ̃u = ψL when |γΔzL| > |δ|. (4.23)

Otherwise,

ψL ≤ ψ̃u ≤ min
(
ψD +

ψL − ψD
wLΔt

Δz′L, ψU

)
when δ > 0, (4.24)

max
(
ψD +

ψL − ψD
wLΔt

Δz′L, ψU

)
≤ ψ̃u ≤ ψL when δ < 0. (4.25)

For the case of wL < 0, δ and γ are defined by

δ = ψL − ψUU , (4.26)

γ =
ψL − ψU

Δz′L
− ψU − ψUU

Δz′U
, (4.27)

and the limiting criterion is described as follows:

ψ̃u = ψU when |γΔzU | > |δ|. (4.28)

Otherwise,

ψU ≤ ψ̃u ≤ min
(
ψUU +

ψU − ψUU
|wL|Δt Δz′L, ψL

)
when δ > 0, (4.29)

max
(
ψUU +

ψU − ψUU
|wL|Δt Δz′L, ψU

)
≤ ψ̃u ≤ ψU when δ < 0. (4.30)

1Advection of monotonically varying quantity by uniform velocity would not generate any minima or maxima.
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Figure 4.1: The arrangement of the labels denoting grid points.

4.1.3 Two-Dimensional UTOPIA

Now, a flux-form two-dimensional advection equation

∂ψ

∂t
+

1
hxhy

[
∂

∂x
(hyuψ) +

∂

∂y
(hxvψ)

]
= 0 (4.31)

is considered. It is assumed that the two-dimensional continuity equation

1
hxhy

[
∂

∂x
(hyu) +

∂

∂y
(hxv)

]
= 0 (4.32)

is satisfied. The required grid stencil is wider than previously defined, so its labeling is illustrated in Figure
4.1. Let us define χ, φ and θ by

χ = hyu, φ = hxv, θ = hxhyψ. (4.33)

The equations (4.31) and (4.32) are expressed as

∂ψ

∂t
= − 1

hxhy

[
∂

∂x
(χψ) +

∂

∂y
(φψ)

]
, (4.34)

∂χ

∂x
+
∂φ

∂y
= 0. (4.35)

It is then assumed that χ and φ is spatially uniform.
With a procedure similar to the one-dimensional case, integration of the right hand side of (4.34) over

one time level and one spatial grid yields∫ tn+1

tn
dt

∫ xL+Δx/2

xL−Δx/2

dx

∫ yL+ΔyL/2

yL−ΔyL/2

dyhxhy × 1
hxhy

[
∂

∂x
(χψ) +

∂

∂y
(φψ)

]
= Δt

[
(χne ψ̄

n
e − χnwψ̄

n
w)ΔyL + (φnnψ̄

n
n − φns ψ̄

n
s )Δx

]
. (4.36)

Integration of the left hand side is∫ tn+1

tn
dt

∫ xL+Δx/2

xL−Δx/2

dx

∫ yL+ΔyL/2

yL−ΔyL/2

dyhxhy
∂ψ

∂t

=
∫ xL+Δx/2

xL−Δx/2

dx

∫ yL+ΔyL/2

yL−ΔyL/2

dy(θn+1 − θn)

= ΔxΔyL

[
(θn+1
L − θnL) +

Δx2

24
(θn+1
xxL − θnxxL) +

Δy2
L

24
(θn+1
yyL − θnyyL)

]
. (4.37)



48 CCSR OCEAN COMPONENT MODEL (COCO)

Note that the symbols denoting the accuracy, such as O(Δx), are omitted, as the discussion for the accuracy
goes parallel with the one-dimensional case. As in the one-dimensional case,

θn+1
xxL − θnxxL = −Δt

[
χneψ

n
xxe − χnwψ

n
xxw

Δx
+
φnnψ

n
xxn − φnnψ

n
xxs

ΔyL

]
, (4.38)

θn+1
yyL − θnyyL = −Δt

[
χneψ

n
yye − χnwψ

n
yyw

Δx
+
φnnψ

n
yyn − φnnψ

n
yys

ΔyL

]
. (4.39)

Finite differenced representation of (4.31) now becomes

ψn+1
L = ψnL − Δt

hxhy

(
χne ψ̃

n
e − χnwψ̃

n
w

Δx
+
φnnψ̃

n
n − φns ψ̃

n
s

ΔyL

)
, (4.40)

where

ψ̃nw = ψ̄nw − Δx2

24
ψnxxw − Δy2

L

24
ψnyyw, (4.41)

ψ̃ns = ψ̄ss −
Δx2

24
ψnxxs −

Δy2
L

24
ψnyys. (4.42)

Let us represent the quadratic approximation for ψn around (xw, yw) and (xs, ys) by

ψn = c00 + c10(x− xw) + c20(x− xw)2

+ c01(y − yw) + c02(y − yw)2 + c11(x− xw)(y − yw), (4.43)

ψn = d00 + d01(y − ys) + d02(y − ys)2

+ d10(x− xs) + d20(x− xs)2 + d11(x− xs)(y − ys), (4.44)

respectively. The first expression yields

ψnL = c00 + c10
Δx
2

+ c20
Δx2

4
, (4.45)

ψnW = c00 − c10
Δx
2

+ c20
Δx2

4
, (4.46)

ψnE = c00 + c10
3Δx

2
+ c20

9Δx2

4
, (4.47)

ψnWW = c00 − c10
3Δx

2
+ c20

9Δx2

4
, (4.48)

ψnN = ψnL + c01Δy′L + c02Δy′2L + c11
ΔxΔy′L

2
, (4.49)

ψnS = ψnL − c01Δy′S + c02Δy′2S − c11
ΔxΔy′S

2
, (4.50)

ψnNW = ψnW + c01Δy′L + c02Δy′2L − c11
ΔxΔy′L

2
, (4.51)

ψnSW = ψnW − c01Δy′S + c02Δy′2S + c11
ΔxΔy′S

2
(4.52)

around (xw , yw). There are six coefficients to be determined, so six of the above expressions are necessary.
The choice depends on the sign of unw and vnw: ψnL, ψnW , either of ψnE or ψnWW in the upstream, and three of
ψnN , ψnS , ψnNW , and ψnSW excluding one in the downstream. The choice is summarized as

unw > 0, vnw > 0 ⇒ ψnL, ψ
n
W , ψ

n
WW , ψ

n
S , ψ

n
NW , ψ

n
SW ;

unw < 0, vnw > 0 ⇒ ψnL, ψ
n
W , ψ

n
E , ψ

n
N , ψ

n
S , ψ

n
SW ;

unw > 0, vnw < 0 ⇒ ψnL, ψ
n
W , ψ

n
WW , ψ

n
N , ψ

n
NW , ψ

n
SW ;

unw < 0, vnw < 0 ⇒ ψnL, ψ
n
W , ψ

n
E , ψ

n
N , ψ

n
S , ψ

n
NW . (4.53)



IV. SCHEME AND PARAMETERIZATION 49

The resulting representation for the coefficients are:

uw > 0, vw > 0 uw < 0, vw > 0 uw > 0, vw < 0 uw < 0, vw < 0

c20
ψL − 2ψW + ψWW

2Δx2

ψE − 2ψL + ψW
2Δx2

ψL − 2ψW + ψWW

2Δx2

ψE − 2ψL + ψW
2Δx2

c01 c01−A c01−B c01−B c01−A
c02 c01−A c01−B c01−A c01−B

c11
ψSW − ψW − ψS + ψL

ΔxΔy′S

ψSW − ψW − ψS + ψL
ΔxΔy′S

ψN − ψL − ψNW + ψW
ΔxΔy′L

ψN − ψL − ψNW + ψW
ΔxΔy′L

c00 =
ψL + ψW

2
− c20

Δx2

4

c10 =
ψL − ψW

Δx

c01−A =
(ψNW − ψW )Δy′S − (ψS − ψL)Δy′L

2Δy′LΔy′S
− c02

Δy′L − Δy′S
2

c01−B =
(ψN − ψL)Δy′S − (ψSW − ψW )Δy′L

2Δy′LΔy′S
− c02

Δy′L − Δy′S
2

c02−A =
(ψNW − ψW )Δy′S + (ψSW − ψW )Δy′L

Δy′LΔy′S(Δy′L + Δy′S)

c02−B =
(ψN − ψL)Δy′S + (ψS − ψL)Δy′L

Δy′LΔy′S(Δy′L + Δy′S)
(4.54)

where the superscript n is omitted. Similar consideration results in

us > 0, vs > 0 us > 0, vs < 0 us < 0, vs > 0 us < 0, vs < 0
d02 d02−A d02−B d02−A d02−B

d20
ψSE − 2ψS + ψSW

2Δx2

ψE − 2ψL + ψW
2Δx2

ψSE − 2ψS + ψSW
2Δx2

ψE − 2ψL + ψW
2Δx2

d11
ψSW − ψS − ψW + ψL

Δx(ΔyL + ΔyS)/2
ψSW − ψS − ψW + ψL

Δx(ΔyL + ΔyS)/2
ψE − ψL − ψSE + ψS
Δx(ΔyL + ΔyS)/2

ψE − ψL − ψSE + ψS
Δx(ΔyL + ΔyS)/2

d00 =
ψLΔϕS + ψSΔϕL

ΔyL + ΔyS
− d02

ΔyLΔyS
4

d01 =
2(ψL − ψS)
ΔyL + ΔyS

− d02
ΔyL − ΔyS

2

d02−A = 4
(ψL − ψS)(ΔyS + ΔySS) − (ψS − ψSS)(ΔyL + ΔyS)
(ΔyL + ΔyS)(ΔyS + ΔySS)(ΔyL + 2ΔyS + ΔySS)

d02−B = 4
(ψN − ψL)(ΔyL + ΔyS) − (ψL − ψS)(ΔyN + ΔyL)
(ΔyN + ΔyL)(ΔyL + ΔyS)(ΔyN + 2ΔyL + ΔyS)

d10 =
ψL − ψW

Δx
+ d20Δx− d11

ΔyL
2

or
ψE − ψL

Δx
+ d20Δx− d11

ΔyL
2

(4.55)

Two expressions are given for d10, and the choice should be made in accordance with the sign of the advection
velocity. For instance, ψW is not to be used when us > 0 and vs < 0, so the second expression is valid in
that case. When it is the case that the both expressions are available, they result in the same expression.

The estimation of ψ̄nw and ψ̄ns is realized by spatially averaging ψnw and ψns , respectively, as in the one-
dimensional case. For ψ̄nw, the region for the average is determined by the area expanded by the vector
(uwΔt, vwΔt) and the western boundary of the grid box L. It is illustrated in Figure 4.2. By introducing
the variables,

ξw =
2uw

hTxL + hTxW
, ηw =

2vw
hTyL + hTyW

, (4.56)
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LW

uwΔt

vwΔt

Figure 4.2: The area for average in estimating ψ̄nw when uw > 0 and vw > 0.

ξs =
2us

hTxL + hTxS
, ηs =

2vs
hTyL + hTyS

, (4.57)

the average is calculated as

ψ̄nw =
1

ξnwΔtΔyL

[∫ xw

xw−ξn
wΔt

dx

∫ yw+ΔyL/2−ηn
wΔt

yw−ΔyL/2−ηn
wΔt

dyψn +
∫ xw

xw−ξn
wΔt

dx

∫ yw+ΔyL/2

yw−ΔyL/2

dyψn

]
× 1

2

= c00 − 1
2
ξnwΔtc10 +

1
3
(ξnwΔt)2c20

− 1
2
ηnl Δtc01 +

(
Δy2

L

12
+

1
2
(ηnwΔt)2

)
c02 +

1
4
ξnwΔtηnwΔtc11, (4.58)

ψ̄ns =
1

ΔxηnsΔt

[∫ ys

ys−ηsΔt

dy

∫ xs+Δλ/2−ξsΔt

xs−Δλ/2−ξsΔt

dxψn +
∫ ys

ys−ηsΔt

dy

∫ xs+Δx/2

xs−Δx/2

dxψn

]
× 1

2

= d00 − 1
2
ηnsΔtd01 +

1
3
(ηnsΔt)2d02

− 1
2
ξnsΔtd10 +

(
Δx2

12
+

1
2
(ξns Δt)2

)
d20 +

1
4
ξnsΔtηnsΔtd11. (4.59)

Since ψnxxl = 2c20, ψnyyl = 2c02, ψnxxd = 2d20, and ψnyyd = 2d02, the final expressions are

ψ̃nw = c00 − 1
2
ξnwΔtc10 +

(
1
3
(ξnwΔt)2 − Δx2

12

)
c20

− 1
2
ηnwΔtc01 +

1
2
(ηnwΔt)2c02 +

1
4
ξnwΔtηnwΔtc11, (4.60)

ψ̃ns = d00 − 1
2
ηnsΔtd01 +

(
1
3
(ηnsΔt)2 − Δy2

L

12

)
d02

− 1
2
ξns Δtd10 +

1
2
(ξns Δt)2d20 +

1
4
ξnsΔtηnsΔtd11. (4.61)

Advection velocity uw and vs are estimated from the fluid volume flux (3.64) and (3.65) as

uw
hTyL + hTyW

2
ΔyLMFT

xL = FVxL, (4.62)

vs
hTxL + hTxS

2
ΔxMFT

yL = FVyL, (4.63)

where M represents the masking arrays defined in section 3.4.2, and us and vw are estimated in a consistent
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way as

us
hTyL + hTyS

2
MFT
yL =

1
2
(hVySu

t
SΔzVS + hVySWu

t
SWΔzVSW ), (4.64)

vw
hTxL + hTxW

2
MFT
xL =

1
2
(hVxW v

t
WΔzVW + hVxSW v

t
SWΔzVSW ). (4.65)

4.1.4 Flux Limiter for Two-Dimensional Advection

As in the case of the one-dimensional advection, flux limiter is required to guarantee monotonicity preser-
vation. One possible solution is to apply a one-dimensional limiter, such as introduced previously, to each
direction. This approach certainly preserve monotonicity, but shape of tracer distribution is sometimes
severely distorted2. The one introduced here is a two-dimensional limiter of Leonard et al. [1993 ].

Let us first consider the limiter for the x direction flux. For the sake of brevity of expressions, the
following notations are introduced. The Courant numbers cx and cy are defined by

cxw =
ξwΔt
Δx

, cyw =
ηwΔt
ΔyL

, (4.66)

where the subscript w indicates that these quantities are defined at the western face of the T-point-centered
grid box labeled by L. With regard to this western face, three of the four grid point values ψWW , ψW , ψL
and ψE are used to represent the x direction flux. Let us represent the upstream, center and downstream
values of the three used grid point values by ψup, ψcn and ψdn, respectively:

ψup = ψWW , ψcn = ψW , ψdn = ψL when cxw > 0, (4.67)

ψup = ψE , ψcn = ψL, ψdn = ψW when cxw < 0. (4.68)

Likewise, the grid point values of the northern and southern sides of ψcn are described by ψnn and ψss,
respectively:

ψnn = ψNW , ψss = ψSW when cxw > 0, (4.69)

ψnn = ψN , ψss = ψS when cxw < 0. (4.70)

Finally, ψdiff and ψcurv are defined by

ψdiff = ψdn − ψup, (4.71)

ψcurv = ψdn − 2ψcn + ψup. (4.72)

By defining

ψ̃′
w = ψ̃w +

1
2

[
cyw + |cyw|

2
(ψcn − ψss) +

cyw − |cyw|
2

(ψnn − ψcn)
]
, (4.73)

the limiting criterion is given as follows:

ψ̃′
w = ψcn when |ψcurv| > |ψdiff|. (4.74)

Otherwise, ψ̃′
w is bounded by ψmax and ψmin which are defined by

ψmax = min
(
ψdn, ψup + (ψcn − ψup)

(1 + |cxwcyw|)
|cxw| + |cyw|

)
, ψmin = ψcn when ψdiff > 0, (4.75)

ψmax = ψcn, ψmin = max (ψdn, ψdn + (ψcn − ψdn)|cyw|) when ψdiff < 0. (4.76)
2Advection by spatially uniform velocity fields does not change the shape of distribution of the advected tracer. This

property is called shape preservation.
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Then, ψ̃w is finally determined as

ψ̃w = ψ̃′
w − 1

2

[
cyw + |cyw|

2
(ψcn − ψss) +

cyw − |cyw|
2

(ψnn − ψcn)
]
. (4.77)

Consideration for the y direction limiter is basically the same as the above. The Courant numbers are
defined by

cxs =
ξsΔt
Δx

, cys =
ηsΔt
ΔyL

, (4.78)

and ψup, ψcn and ψdn are represented by

ψup = ψSS , ψcn = ψS , ψdn = ψL when cys > 0, (4.79)

ψup = ψN , ψcn = ψL, ψdn = ψS when cys < 0. (4.80)

The grid point values of the eastern and western sides of ψcn, ψee and ψww, are represented by

ψee = ψSE , ψww = ψSW when cys > 0, (4.81)

ψee = ψE , ψww = ψW when cys < 0. (4.82)

The definition for ψdiff is the same as the previous, but that for ψcurv is slightly modified due to the variable
grid spacing in the y direction:

ψdiff = ψdn − ψup, (4.83)

ψcurv =
(
ψdn − ψcn

Δy′S
− ψcn − ψup

Δy′up

)
Δycn, (4.84)

where

Δy′up = Δy′SS , Δycn = ΔyS when cys > 0, (4.85)

Δy′up = Δy′L, Δycn = ΔyL when cys < 0. (4.86)

By defining

ψ̃′
s = ψ̃s +

1
2

[
cxs + |cxs|

2
(ψcn − ψww) +

cxs − |cxs|
2

(ψee − ψcn)
]
, (4.87)

the limiting criterion is given as follows:

ψ̃′
s = ψcn when |ψcurv| > |ψdiff|. (4.88)

Otherwise, ψ̃′
s is bounded by ψmax and ψmin which are defined by

ψmax = min
(
ψdn, ψup + (ψcn − ψup)

(1 + |cxscys|)
|cxs| + |cys|

)
, ψmin = ψcn when ψdiff > 0, (4.89)

ψmax = ψcn, ψmin = max (ψdn, ψdn + (ψcn − ψdn)|cxs|) when ψdiff < 0. (4.90)

Then, ψ̃s is finally determined as

ψ̃s = ψ̃′
s −

1
2

[
cxs + |cxs|

2
(ψcn − ψww) +

cxs − |cxs|
2

(ψee − ψcn)
]
. (4.91)
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Figure 4.3: (a) Fluid volume budget of T-point centered boxes for horizontal inflow over a sloping bottom.
The shaded boxes indicate land grids. (b) Corresponding fluid volume budget for V-point centered boxes.
The dotted vertical lines indicate boundaries for the T-point-centered boxes.

4.2 Momentum Advection

The centered-in-space differencing scheme for the momentum advection described in chapter 3 is the standard
choice in the case of non-eddy-resolving resolution. In eddy-resolving (or eddy-permitting) cases, a pseudo-
enstrophy preserving scheme of Ishizaki and Motoi [1999 ] is used. The scheme also takes up/down-slope
momentum advection into consideration. Its strategy for discretization is described in detail by themselves,
in such a way that it is directly applicable to COCO. Therefore, its discretized representation is not repeated
here, and only the basic concept behind is described below. The examples below are also taken from Ishizaki
and Motoi [1999 ].

4.2.1 Up/Down-Slope Momentum Advection

Let us consider the case illustrated in Figure 4.3a. The bottom is sloping up toward the right, and there
is vertically uniform inflow from the left end. Vertically integrated rightward volume flux is conserved, so
rightward velocity becomes gradually larger as the fluid moves to the right. It is assumed rightward velocity
is uniformly intensified in vertical (it is actually expected when the fluid is not stratified). The corresponding
fluid volume budget for T-point-centered grid boxes is indicated by arrows in Figure 4.3a. Tracer advection
is calculated in a way consistent with this fluid volume budget.

By following the method described in section 3.3.4, fluid volume budget for V-point-centered grid boxes
is estimated as the black arrows (both thin and thick) in Figure 4.3b. Momentum advection is calculated in
a way consistent with this fluid volume budget. There is no volume flux convergence/divergence at any V-
point-centered grid box, of course. According to this treatment, the momentum transported with the volume
fluxes indicated by thick horizontal arrows (just to the left of lateral boundaries) is interpreted as dissipating
out at lateral boundaries; and the vertical volume fluxes indicated by the thick vertical arrows accompany
vertical momentum fluxes which slow down the horizontal flows just above. It is a natural consequence of
the no-slip lateral boundary condition for the horizontal velocity components (see section 1.3). In a step-like
representation of the ocean floor, this no-slip lateral boundary is eventually applied to sloping “bottom,” too.
If this kind of momentum dissipation on sloping bottom is not favorable, slantwise momentum advection by
the volume fluxes indicated by the gray arrows in Figure 4.3b has to be taken into account.

The case exemplified in Figure 4.3 is very simplified as it is two-dimensional. In an actual application of
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this scheme to an OGCM, it is necessary to define eight-direction slantwise momentum advection velocity
at each WV-point, in addition to the regular vertical advection.

4.2.2 Preservation of Enstrophy

Let us consider discretized representations of the horizontal advection term of the momentum equation (1.1):

∂

∂x
(hyuu) +

∂

∂y
(hxvu). (4.92)

Only the x-direction momentum equation is discussed here. Once it is established, the treatment for the
y-direction momentum equation is obvious.

The simplest five-point representation (i.e., momentum at N , S, E, W and L appears) is

[
∂

∂x
(hyuu) +

∂

∂y
(hxvu)

]rect
L

=
1

Δx

[
(hyu)e

uE + uL
2

− (hyu)w
uL + uW

2

]
+

1
Δy′L

[
(hxv)n

uN + uL
2

− (hxv)s
uL + uS

2

]
, (4.93)

where the upper case labels (subscripts) indicate V-points, and the lower case labels indicate faces (for n, s,
e and w) or vertices (for ne, se, nw and sw) of the grid box which contains the V-point labeled by L. This
five-point representation corresponds to what is described in section 3.3.4. This is good for conservation of
momentum and kinetic energy, but not for enstrophy.

Other discretized representations are possible if a wider grid stencil is allowed to be used. One possible
representation is

[
∂

∂x
(hyuu) +

∂

∂y
(hxvu)

]diag

L

=
1

2Δx

[
(hyu)ne

uNE + uL
2

+ (hyu)se
uSE + uL

2

−(hyu)nw
uL + uNW

2
− (hyu)sw

uL + uSW
2

]

+
1

2Δy′L

[
(hxv)ne

uNE + uL
2

+ (hxv)nw
uL + uNW

2

−(hxv)se
uSE + uL

2
+ (hxv)sw

uL + uSW
2

]
. (4.94)

It is rewritten as[
∂

∂x
(hyuu) +

∂

∂y
(hxvu)

]diag

L

=
1

2ΔxΔy′L

{
[(hyu)neΔy′L + (hxv)neΔx]

uNE + uL
2

+ [(hyu)seΔy′L − (hxv)seΔx]
uSE + uL

2

− [(hyu)swΔy′L + (hxv)swΔx]
uL + uSW

2

− [(hyu)nwΔy′L − (hxv)nwΔx]
uL + uNW

2

}
, (4.95)

so this representation can be interpreted as momentum advection by diagonal direction velocity.
A combination of the above two representations

α

[
∂

∂x
(hyuu) +

∂

∂y
(hxvu)

]rect
L

+ β

[
∂

∂x
(hyuu) +

∂

∂y
(hxvu)

]diag

L

(4.96)
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under the condition
α+ β = 1 (4.97)

is also valid. By choosing α = 2/3 and β = 1/3, the discretized representation for momentum advection
conserves pseudo-enstrophy, similar to the enstrophy-preserving scheme of Arakawa [1966 ]. Here, pseudo-
enstrophy preservation means that quantities defined by

[
1

hxhy

∂

∂x
(hyv)

]2
,

[
1

hxhy

∂

∂y
(hxu)

]2
(4.98)

are conserved, while enstrophy is the square of vorticity ζ, which is defined by

ζ =
1

hxhy

[
∂

∂x
(hyv) − ∂

∂y
(hxu)

]
. (4.99)

4.3 Horizontal Friction

In non-eddy-resolving cases, the standard choice for horizontal friction is the classical Laplacian (harmonic)
viscosity described in section 1.2.2. Value of the horizontal viscosity coefficient is determined by a require-
ment from numerical stability. Horizontal friction induces a viscous boundary layer along oceanic western
boundary, and its width is dependent on the viscosity coefficient. Numerical instability occurs when this
viscous boundary layer is not resolved [Bryan, 1975 ]. Let Δλ be the grid width in the longitudinal direction
of the geographical coordinate system. In order to avoid the numerical instability, the horizontal viscosity
coefficient must satisfy

AH > β

(√
3Δλ
π

)3

, (4.100)

where β is the meridional (in the geographical coordinate) derivative of the Coriolis parameter.

4.3.1 Two-coefficient horizontal viscosity

The general consititutive equation for the case of horizontal-vertical transverse anisotropy is described in
appendix D.4.4. Large et al. [2001 ] propose the form of

c1 = AH +BH , c2 = 0, c3 = BH −AV , c5 = AV , (4.101)

where AH and BH represent two different horizontal viscosity, and AV is vertical viscosity. It is mostly
for the sake of improving representation of the Equatorial Under Current in coarse-resolution setups. The
constitutive equation becomes

τxx − τyy = 2AH(εxx − εyy), (4.102)

τxy = 2BHεxy, (4.103)

τxz = 2AV εxz, (4.104)

τyz = 2AV εyz (4.105)

instead of (1.36)–(1.39). The coefficient BH is related to viscous western boundary layer, to which the
above-mentioned criterion by Bryan [1975 ] should be applied. However, application of this criterion over
the whole domain makes no sense in adopting this viscosity formulation. Its application should be limitted
to regions spanning by a few grids from the western boundary. The coefficient AH cannot freely be chosen,
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either, as its effect has to eliminate dispersive noise of the centered spatial differencing. It requires the grid
Reynolds number, defined by VΔ/AH (V and Δ are horizontal velocity and grid spacing, respectively), be
less than two.

4.3.2 Shear-dependent viscosity coefficient

In eddy-resolving cases, a biharmonic version of Smagorinsky viscosity [Smagorinsky, 1963 ] is the first choice.
This scheme selectively eliminates smaller scale velocity variations than harmonic and/or constant-coefficient
viscosity does. The biharmonic scheme is realized by applying the harmonic scheme described in section 1.2.2
twice. Let BH denote the coefficient for horizontal biharmonic diffusion. First, the harmonic viscosity terms
Vu and Vv are calculated as described in section 3.3.4 (the first one of the two described methods), except
that the horizontal viscosity coefficient is replaced by

√
BH . Then, by regarding the harmonic viscosity terms

as horizontal velocity components, the same procedure is repeated with the same viscosity coefficient
√
BH .

Finally, the sign is reversed. Following Griffies and Hallberg [2000 ], the biharmonic viscosity coefficient is
determined as

BH =
1
8

(
CΔ2

π

)2

D, (4.106)

where Δ (spatially variable) is chosen as the smaller one of Δx and Δy, and D is defined by

D =
√

(εxx − εyy)2 + (2εxy)2. (4.107)

C is a nondimensional parameter, whose typical value is 2 ∼ 4.

4.4 Convection

Vertical convection, which is induced by unstable stratification, is not properly represented in OGCMs
because of two reasons. One of the reasons is in the employment of the hydrostatic approximation, which
separates the direct link between buoyancy and acceleration of vertical fluid motion. The second reason is
related to resolution of OGCMs in actual uses. A typical horizontal scale of vertical convection, or convective
plumes, is less than 1 km, which cannot be resolved by regular OGCMs for global or basin-scale modeling.
So, there is a need to apply a physical parameterization to remove unstable stratification.

A classical, still widely used, method is the convective adjustment, where unstable water column is artifi-
cially homogenized with conserving heat and salt (and other tracers). There are several possible algorithms
realizing the convective adjustment. One of the choices is pairwise adjustment. In the pairwise adjustment,
potential density of two vertically adjacent grids is compared, and they are mixed when instability is found.
For each water column, this pairwise adjustment is applied sequentially from top to bottom. Unstable strat-
ification might not be completely removed by applying this procedure once. If complete removal is intended,
the procedure should be repeated several times.

COCO employs the convective adjustment for the standard choice, but its algorithm is not the pairwise
adjustment. It is summarized as follows:

1. Set the index K, indicating the starting level of the convective adjustment, to one (the top level). Set
the index k, indicating the level where instability is currently judged, to two (the second level).

2. Compare potential density of the (k − 1)-th and k-th levels. The reference depth of potential density
is selected at the k-th level. If instability is found, go to the step 3. If instability is not found, go to
the step 4.
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3. Mix the water column between the K-th level and the k-th level. Increase k by one. If the (new) k-th
level is below the ocean floor, the whole procedure ends here. If not, go back to the step 2 with the
new k.

4. Set K to k. Then, increase k by one. If the (new) k-th level is below the ocean floor, the whole
procedure ends here. If not, go back to the step 2 with the new k and K.

When there is no heat/salt sink or source in the ocean interior nor at the ocean floor, this algorithm
completely removes unstable stratification. Note that complete removal of instability in a single step is not
necessarily physically plausible.

Another simple way is to enhance vertical diffusivity where stratification is unstable. This method is
also prepared in the COCO model package. The enhanced value of vertical diffusivity is a model parameter,
taking 1 m2 s−1 for example.

Both of the above methods are unable to represent the effect of penetrative convection. Because the
actual horizontal scale of convective plumes is much less than the usual horizontal grid size of OGCMs,
actual convective plumes do not lose (negative) buoyancy at the level where the convective adjustment
reaches. As a result, the convective adjustment could underestimate dense water input into deep layers by
overly homogenizing upper part of water columns.

4.5 Surface Mixed Layer

The standard surface mixed layer parameterization of COCO is based on the turbulence closure of Noh and
Kim [1999 ], which is a derivative of the level 2.5 turbulence closure of Mellor and Yamada [1982 ]. A slight
modification is applied to the original parameterization. Its formulation is repeated here with the applied
modification. The method of time differencing is also described.

In the level 2.5 turbulence closure, turbulent kinetic energy (TKE) E is the only prognostic variable for
subgrid-scale motions, and vertical diffusivity KV and vertical viscosity AV are estimated as a function of
TKE and other turbulence-related parameters. Time evolution of TKE is controlled by vertical diffusion,
production due to vertical shear, reduction associated with vertical diffusion of buoyancy3, and dissipation:

∂E

∂t
=

∂

∂z

(
KE

∂E

∂z

)
+AV

[(
∂u

∂z

)2

+
(
∂v

∂z

)2
]

+
g

ρ0
KV

∂ρ

∂z
− ε. (4.108)

KE is the vertical diffusivity of TKE, and the dissipation term ε is represented by

ε =
Cq3

l
, (4.109)

where C is a constant of proportionality, q =
√

2E is the root-mean-square velocity of turbulence, and l is
the turbulence length scale. Vertical diffusivity and viscosity are given by

AV = Sql, KV =
AV
Pr

, KE =
AV
σ
. (4.110)

The coefficient σ is a constant, taken to be 1.95. The coefficients S and C are represented by

S =
S0√

1 + αRit
, C = C0

√
1 + αRit, (4.111)

3Vertical diffusion of buoyancy (temperature and salinity) under stable stratification increases potential energy of a water
column. In the case of eddy-induced turbulent mixing, it means conversion of TKE to potential energy, so vertical diffusion of
buoyancy is a sink of TKE.
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where Rit is a turbulence Richardson number defined by

Rit =
(
Nl

q

)2

(4.112)

and α is a constant of proportionality, which is set to 3. The buoyancy frequency N is defined by

N2 = − g

ρ0

∂ρ

∂z
. (4.113)

The values of S and C at neutral stability (the case of Rit = 0) are given as S0 = 0.39 and C0 = 0.06.
The coefficient Pr is constant in the original formulation. However, experimental and theoretical studies

have indicated that Pr changes in proportion with the turbulence Richardson number in the limit of strong
stratification, while it becomes almost constant for high turbulence [Baum and Caponi, 1992 ]4. On the
other hand, observations and laboratory experiments also indicate that Pr is proportional to the (regular)
Richardson number defined by

Ri =
N2

(∂u/∂z)2 + (∂v/∂z)2
(4.114)

when fluid is strongly stratified [Kondo et al., 1978 ]. Here we follow the latter formulation:

Pr = Pr0 + βRi, (4.115)

where Pr0 = 0.8 and β = 7.
The sea surface boundary condition for TKE is given by

KE
∂E

∂z

∣∣∣∣
surface

= mu3
∗, (4.116)

where the frictional velocity u∗ is defined by

u2
∗ =

√
τ2
x + τ2

y

ρ0
(4.117)

and the constant of proportionality m is taken to be 100.
The turbulence length scale is calculated by

l =
κ(d+ z0)

1 + κ(d+ z0)/h
, (4.118)

where κ = 0.4 is the von Karman constant, d is depth from the sea surface (positive value), z0 is a roughness
length scale at the sea surface, and h is depth of the sea surface mixed layer. The roughness length scale is
selected to be 1 m, and the depth of the mixed layer is defined by the level above which vertical diffusivity
is larger than a background value (typically of the order of 1 × 10−5 m2 s−1).

In numerically solving (4.108), the vertical diffusion term is discretized by the backward-in-time method,
as in the case of tracer diffusion and viscosity. Furthermore, the other terms in the right hand side of (4.108)
also include contribution from TKE, and the simple forward-in-time discretization could induce numerical
instability when the “coefficient” of TKE becomes very large. Since these terms are nonlinear in terms of
their dependence on TKE, they are semi-implicitly discretized in time. The TKE equation (4.108) can be
rewritten as

∂E

∂t
=

∂

∂z

(
KE

∂E

∂z

)
− γE − δE, (4.119)

4They suggest to parameterize Pr by ∼ 1 for Rit < 0.14 and Rit/0.14 for Rit > 0.14.
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where

γ =
2S0l

q
√

1 + αRit

[
N2

Pr
−
(
∂u

∂z

)2

−
(
∂v

∂z

)2
]

(4.120)

δ =
2C0q

√
1 + αRit
l

(4.121)

Although the coefficients γ and δ include q =
√

2E, their dependence is ignored in considering time dis-
cretization. The coefficient of the dissipation term, δ, is always positive, and the dissipation term is always
discretized by the backward-in-time method. The coefficient γ, on the other hand, could become negative.
When it is negative, the backward-in-time method should not be used, because it underestimates growth of
turbulence and results in too shallow mixed layer. Let us now consider time integration of an equation

∂E

∂t
= −γE (4.122)

from the n-th time level to the (n+ 1)-th time level. Its exact solution is

En+1 = e−γΔtEn. (4.123)

In time-differencing (4.122), let us express the right hand side by a weighted average of the n-th and (n+1)-th
time level values as:

En+1 − En

Δt
= −γ[(1− μ)En+1 + μEn]. (4.124)

When the weight μ is chosen as

μ =
1
γΔt

+
e−γΔt

e−γΔt − 1
, (4.125)

the finite-differenced equation returns the exact solution. Therefore, the second term of the right hand side
of (4.119) is time-differenced in this way. Although this expression is valid for any γ other than zero, there
is a problem in actual computation when γ is a large negative number. In that case, it is all right to simply
solve this term by the forward-in-time method.

The turbulence closure scheme is applicable not only to the surface mixed layer but also to the bottom
boundary layer. However, its application should be accompanied by fine vertical resolution. Otherwise,
shear-induced TKE production is not properly represented. Since COCO is a z coordinate OGCM, where
fine vertical resolution near the ocean floor of changing depths means fine vertical resolution all the way
from top to bottom, the bottom boundary layer is separately dealt with by a different parameterization.
Therefore, it is reasonable to limit the application of the turbulence closure scheme to upper several hundred
meters and reduce computational cost.

4.6 Background Vertical Diffusivity

Vertical diffusivity in the ocean interior, where its value is not controlled by boundary layer processes, is
often called background vertical diffusivity5. It is one of the most crucial parameters in OGCMs, controlling
thermocline depth and deep meridional overturning circulation, for example. The source of background
vertical diffusivity is considered to be breaking of internal waves. Internal waves are, on the other hand,
generated by wind-induced turbulence at the sea surface, internal tides on the ocean floor (especially for
rough bottom), and various kinds of dynamical instability (e.g., Kelvin-Helmholtz instability). Therefore,

5Strictly speaking, the word “vertical” should be replaced by “diapycnal,” as what really affect thermocline or deep meridional
overturning circulation is diapycnal buoyancy flux.



60 CCSR OCEAN COMPONENT MODEL (COCO)

vertical diffusivity is expected to be spatially (and also temporally) inhomogeneous, and observations have
actually shown that it is the case. However, its actual distribution is still largely unknown. Note that a
region of strong internal wave generation does not necessarily coincide with that of high vertical diffusivity,
as internal waves could propagate a long distance before breaking. Since wave breaking is highly associated
with vertical stratification, background vertical diffusivity is sometimes parameterized as a function of the
buoyancy frequency (inversely proportional to it, for example).

In the standard setup of COCO, a vertical profile is prescribed for background vertical diffusivity, and
its horizontal variation is not taken into account. For global ocean modeling, an empirical vertical profile of
Tsujino et al. [2000 ] is usually used. The profile is given by

0.1 + 0.9 ×
(

1 + tanh
−z − 1500

750

)
for z > −1500,

−1 + 2 ×
(

1 + tanh
−z − 1500

2000

)
for z < −1500, (4.126)

where the depth z (negative) is measured in meters, and the unit of the resulting vertical diffusivity is 10−4

m2 s−1. Between 30◦N and 30◦S, this background diffusivity is multiplied by the factor of

|f | cosh−1(N/|f |)
f30 cosh−1(N0/f30)

, (4.127)

following the finding by Gregg et al. [2003 ] that the dissipation rate is reduced in this manner at low
latitudes. Here, f is the Coriolis parameter and f30 is its value at 30◦N; and N is the buoyancy frequency
and N0 = 5.24 × 10−3 s−1 is its value for the reference stratification assumed in the internal wave model
of Garret and Munk [1975 ]. Although the above described function is for the dissipation rate, it is applied
directly to vertical diffusivity in COCO. Furthermore, N is replaced by N0, thus making this multiplied
factor known a priori.

4.7 Bottom Boundary Layer

COCO incorporates the bottom boundary layer (BBL) parameterization of Nakano and Suginohara [2002 ]. It
assumes a layer of constant depth at the bottom of each water column, and horizontal transfer of momentum
and tracers are realized between those BBL grids. Since the bottom boundary layer exists along the ocean
floor, its formulation should be based on a terrain-following coordinate system.

Let us consider a σ coordinate system with its base chosen as the ocean floor. Variables and symbols are
defined in section 1.1, except for the definition of σ. It is now defined by

σ =
z∗ +H

η +H
. (4.128)

Spatial partial derivatives are converted as

∂ψ∗

∂x∗
=

∂ψ

∂x
+

1
η +H

∂ψ

∂σ

[
(1 − σ)

∂H

∂x
− σ

∂η

∂x

]
, (4.129)

∂ψ∗

∂y∗
=

∂ψ

∂y
+

1
η +H

∂ψ

∂σ

[
(1 − σ)

∂H

∂y
− σ

∂η

∂y

]
, (4.130)

∂ψ∗

∂z∗
=

1
η +H

∂ψ

∂σ
, (4.131)

so the hydrostatic equation is represented by

0 = − 1
η +H

∂P

∂σ
− ρg. (4.132)
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Figure 4.4: Grid configuration for the bottom boundary layer parameterization.

Thus, the horizontal pressure gradient is converted as

∂P

∂x
→ ∂P

∂x
+ ρg

[
σ
∂η

∂x
+ (σ − 1)

∂H

∂x

]
, (4.133)

∂P

∂y
→ ∂P

∂y
+ ρg

[
σ
∂η

∂y
+ (σ − 1)

∂H

∂y

]
. (4.134)

The ocean floor is represented by σ = 0. For the bottom boundary layer calculation, therefore, the right
hand sides of the momentum equations (1.1) and (1.2) are replaced by

− 1
ρ0hx

[
∂P

∂x
− ρg

∂H

∂x

]
+ Vu, (4.135)

− 1
ρ0hy

[
∂P

∂y
− ρg

∂H

∂y

]
+ Vv, (4.136)

respectively. Note that the terms ∂P/∂x and ∂P/∂y are calculated in the σ coordinate system. So, in their
discretized representations, the four grid point values of pressure used in (3.114) and (3.115) are estimated
at different levels when the bottom level is different among them. Newtonian drag terms, −αu and −αv, are
also added to these right hand sides. These Newtonian drag terms represent the effect of baroclinic eddies
which allows flows on a slope to deviate from geostrophic contours (lines of constant f/H). The coefficient
α is chosen to be identical to f , as numerical and laboratory experiments indicate that the direction of
down-sloping flows is inclined by the angle of 45◦ against geostrophic contours.

Vertical diffusion and viscosity coefficients at the top of the BBL grids are specified independently of
their background values. Larger values are specified for them to represent the effect of entrainment taking
place at the top of the boundary layer.

In COCO the BBL variables are stored in two ways, as illustrated in Figure 4.4. The bottom-most
grids of the three-dimensional arrays for the velocity components and tracers are used exclusively for the
BBL parameterization. The BBL variables are stored in those bottom-most grids and also just below the
bottom of the regular (non-BBL) grids. Horizontal transfer of momentum and tracers is calculated by using
the values stored in the former, and vertical transfer is done by using the latter. Diagnostic calculation of
vertical velocity is started from the bottom-most BBL grids and proceeds upward irrespective of whether
the grid is above or below the ocean floor. In this calculation, the horizontal velocity components of the
BBL grids just below the regular grids are set to zero. Since the horizontal velocity components of land grid
points are zero, this procedure gives the correct BBL vertical velocity for both of the BBL storages. Note
that the BBL grids are not necessarily defined at all the horizontal points.
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4.8 Isopycnal Diffusion

The diffusion term appearing in the tracer equations does not represent the molecular diffusion but effects of
unresolved-scale motions. Such unresolved-scale motions are often called symbolically as eddies. Owing to
the large aspect ratio of the ocean and the existence of stratification, motions of such eddies occur primarily
on horizontal planes. When the diffusion term is represented by (1.33), therefore, horizontal diffusivity
is chosen to be much larger than vertical diffusivity. Tracers in the ocean are actually well mixed in the
horizontal direction as compared with the vertical direction. A closer look of eddy-induced mixing of tracers
reveals that eddies mix tracers along isopycnal surfaces rather than horizontal planes. When an isopycnal
surface is significantly6 inclined against the horizontal direction, large horizontal diffusivity could induce
diapycnal diffusivity larger than a background value. Such a situation is not favorable in using OGCMs.
Large diffusivity should be applied selectively to isopycnal directions.

Since COCO is formulated under the z vertical coordinate system, diffusive tracer fluxes along isopycnal
surfaces should be remapped to fluxes in the x, y and z directions, which is realized by coordinate system
rotation. In its formulation, COCO adopts the method (and approximation) of Cox [1987 ]. Slope of isopycnal
surface in the x and y directions is given by

sx = − 1
hx

∂ρ

∂x

/
∂ρ

∂z
, sy = − 1

hy

∂ρ

∂y

/
∂ρ

∂z
, (4.137)

respectively, and the rotation matrix becomes⎛
⎝ 1 0 sx

0 1 sy
sx sy s2x + s2y

⎞
⎠ . (4.138)

Let KI be a coefficient for isopycnal diffusion. Diffusive fluxes of tracer T in the x, y and z directions are
represented by

x : KI

(
1
hx

∂T

∂x
+ sx

∂T

∂z

)
, (4.139)

y : KI

(
1
hy

∂T

∂y
+ sy

∂T

∂z

)
, (4.140)

z : KI

[
sx
hx

∂T

∂x
+
sy
hy

∂T

∂y
+ (s2x + s2y)

∂T

∂z

]
(4.141)

instead of (1.32), so the diffusion term becomes

DT =
1

hxhy

{
∂

∂x

[
hyKI

(
1
hx

∂T

∂x
+ sx

∂T

∂z

)]
+

∂

∂y

[
hxKI

(
1
hy

∂T

∂y
+ sy

∂T

∂z

)]}

+
∂

∂z

{
KI

[
sx
hx

∂T

∂x
+
sy
hy

∂T

∂y
+ (s2x + s2y)

∂T

∂z

]}
(4.142)

instead of (1.33). The background vertical diffusion term is added to it. Regular horizontal diffusion could
also be added to it.

A large isopycnal slope means large effective vertical diffusivity. Although the vertical diffusion is im-
plicitly solved, excessively large vertical diffusivity could induce a numerical problem. To avoid it, isopycnal
slope is bounded by a prescribed value, which is typically chosen as 0.01.

6The “significance” may be judged, for example, against the aspect ratio of the ocean, which is of the order of 104 or larger.
By this standard, an angle θ is significantly large when tan θ > 10−4.



IV. SCHEME AND PARAMETERIZATION 63

4.9 Isopycnal Layer Thickness Diffusion

Under horizontal resolution of ∼ 1◦ or coarser, mesoscale eddies are the primary contributor to isopycnal
mixing. However, isopycnal diffusion of tracers described in section 4.8 is not sufficient for representing the
effects of mesoscale eddies on tracer distribution. Mesoscale eddies are generated principally by baroclinic
instability, which occurs where isopycnal surfaces are steeply sloping. As a result of tracer transport induced
by those eddies, slope of the isopycnal surfaces is reduced. One possible way to parameterize such an effect of
mesoscale eddies is to consider diffusion of isopycnal layer thickness (vertical distance between two isopycnal
surfaces) in the direction of isopycnal surfaces [Gent and McWilliams, 1990 ].

In the z vertical coordinate system, isopycnal diffusion of isopycnal layer thickness is represented either
by bolus velocity [Gent and McWilliams, 1990 ] or by a skew component of the diffusion coefficient tensor
[Griffies, 1998 ]. COCO adopts the latter method, which is very easily implemented once the isopycnal
diffusion scheme is introduced. The diffusion coefficient tensor of the isopycnal diffusion scheme is the
product of KI and (4.138). Let KG be the diffusion coefficient for the layer thickness diffusion. The
combined coefficient tensor of the isopycnal diffusion and layer thickness diffusion becomes⎛

⎝ KI 0 (KI −KG)sx
0 KI (KI −KG)sy

(KI +KG)sx (KI +KG)sy KI(s2x + s2y)

⎞
⎠ . (4.143)

In the bolus velocity method, on the other hand, tracers are advected by the sum of large scale velocity
(represented by the regular velocity components appearing in the primitive equations) and bolus velocity.
Let u∗, v∗ and w∗ denote x, y and z, respectively, components of the bolus velocity. They are defined by

u∗ = − ∂

∂z
(KGsx), (4.144)

v∗ = − ∂

∂z
(KGsy), (4.145)

w∗ =
1

hxhy

[
∂

∂x
(hyKGsx) +

∂

∂y
(hxKGsy)

]
. (4.146)

It is easy to see that the bolus velocity satisfies the continuity equation:

1
hxhy

[
∂

∂x
(hyu∗) +

∂

∂y
(hxv∗)

]
+
∂w∗

∂z
= 0, (4.147)

and it is also easy to see that the two methods give the same result:

div

⎛
⎜⎜⎜⎜⎜⎝

0 0 −KGsx

0 0 −KGsy

KGsx KGsy 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1
hx

∂ψ

∂x
1
hy

∂ψ

∂y
∂ψ

∂z

⎞
⎟⎟⎟⎟⎟⎠ = − 1

hxhy

[
∂

∂x
(hyu∗ψ) +

∂

∂y
(hxv∗ψ)

]
− ∂

∂z
(w∗ψ), (4.148)

where ψ stands for a tracer quantity.





Appendix A

Sea Surface Forcing

OGCMs are driven by fluxes of momentum (τx and τy), heat (FH) and freshwater (FW ) at the sea surface, as
described in section 1.3. There are several possible methods to impose these fluxes, and the ways adopted in
COCO are described below. These fluxes are closely linked to sea ice where it exists, and their formulation
is heavily dependent on how sea ice is dealt with. Issues related to sea ice is not mentioned here but in
appendix B.

A.1 Heat Flux

A.1.1 Sea Surface Temperature Restore

A classical and one of the easiest way to specify sea surface heat flux is Newtonian damping of model sea
surface temperature to observed values. Let T1 be temperature of the model’s top level and T∗ be observed
sea surface temperature to which T1 is restored. Sea surface heat flux FH is estimated by

FH
ρ0Cp

=
(T1 − T∗)Δz1

τR
, (A.1)

where Δz1 is the thickness of the model’s top level, and τR is a time constant for restoring. An actual
value for τR should depend on Δz1, and a typical choice is to make them satisfy Δz1/τR = 1 m dy−1. Time
discretization for the heat flux term is done by the forward-in-time method, which means that T n−1

1 is used
when temperature is predicted from the (n−1)-th time level to the (n+1)-th time level. Use of the leap-frog
method (Tn1 ) would lead to numerical instability.

There are some fundamental problems in this method. First and foremost, although it is intended to
reproduce the specified sea surface temperature T∗, the model sea surface temperature T1 never realize it.
If T1 exactly coincides with T∗, FH becomes zero everywhere, which means that the model ocean is not
thermally forced. Related to this problem, there is no experimental or observational way to determine a
physically valid value for τR.

As described later, however, the same procedure is also applicable to a more physically plausible rep-
resentation of sea surface heat flux. In COCO, the default setup for the sea surface heat flux calculation
is this restoring method, where horizontal distributions (and their temporal variations) of T∗ and τR are
prescribed. When a sea ice model is coupled, the next method is used normally.

65
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A.1.2 Using Surface Air Properties and Bulk Formulae

Sea surface heat flux Q is decomposed into four parts as

Q = QSW +QLW +QSH +QLH , (A.2)

where the terms in the right hand side stand for shortwave radiative flux, longwave radiative flux, sensible
heat flux, and latent heat flux, respectively1. Shortwave and longwave radiative fluxes are further decomposed
into upward (denoted by the superscript u) and downward (denoted by the superscript d) parts:

QSW = QuSW +QdSW , (A.3)

QLW = QuLW +QdLW . (A.4)

Note that the sign for all of these flux components is defined as upward positive, thus the downward radiative
fluxes are always negative and the upward radiative fluxes are always positive.

Downward radiative fluxes are not directly dependent on the condition of the sea surface, and their
observed values are simply specified to drive the model. Shortwave emission from the sea surface is negligible,
so the upward part of the shortwave radiative flux is accounted for solely by reflection of the incoming
downward flux. Let αS be the sea surface albedo for shortwave radiation. The upward shortwave radiative
flux is represented by

QuSW = −αSQdSW . (A.5)

On the other hand, the upward longwave radiative flux has both reflection of the incoming flux and emission
from the sea surface. Let αL be the sea surface albedo for longwave radiation and εL be emissivity of the
sea surface relative to the black body radiation. The upward longwave radiative flux is represented by

QuLW = −αLQdLW + εLσT
4
S , (A.6)

where σ is the Stefan-Boltzmann constant and TS is sea surface temperature. TS is given by T1 when there
is no sea ice, and by snow or sea ice surface temperature when it exists. When radiative equilibrium is
assumed, emissivity becomes identical to coalbedo:

εL = 1 − αL. (A.7)

By use of a bulk formula, sensible heat flux is calculated from sea surface temperature and surface air
temperature. It is generally represented by

QSH = ρACACS(TS − TA), (A.8)

where ρA and TA are surface air density and temperature, respectively, measured at several meters above
the sea surface, for example, and CA is the heat capacity of air. The coefficient CS is a function of surface
air conditions and has the dimension of length per time. Latent heat flux is also calculated by using a bulk
formula as

QLH = ρALCL(qS − qA), (A.9)

where qA is surface air specific humidity and qS is sea surface specific humidity. L stands for the latent heat
of evaporation when the surface is liquid, and for the latent heat of sublimation when the surface is solid.

1The symbol Q is employed here instead of FH to avoid confusion in appendix B. Q calculated here is given as FH in (1.58)
when there is no sea ice.
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The coefficient CL also depends on surface air conditions and has the dimension of length per time. Sea
surface specific humidity is estimated as saturation specific humidity of air at sea surface temperature:

qS = qsat(TS), (A.10)

where qsat represents saturation specific humidity as a function of temperature2. It is sometimes multiplied
by a factor slightly smaller than unity.

As a whole, sea surface heat flux Q is obtained as follows when QdSW , QdLW , TA, qA and TS are specified:

Q = (1 − αS)QdSW + εL(QdLW + σT 4
S) + ρACACS(TS − TA) + ρALCL(qsat(TS) − qA). (A.11)

Note that surface wind velocity is usually required to estimate CS and CL. As in the case of the Newtonian
damping, time level for TS should be chosen so that the forward-in-time method is realized.

Representation of CS and CL as functions of surface air conditions is not unique. Several datasets are
provided to force OGCMs, and each dataset has its own relevant set of bulk formulae. For example, a
climatological dataset compiled by Röske [2001 ] requires the bulk formulae of Kara et al. [2000 ], while
another dataset by Large and Yeager [2004 ] does a different one (described therein).

While incoming downward longwave radiation is completely absorbed within a very thin surface layer,
shortwave radiation can penetrate significantly into depths. In order to take account of its effect, shortwave
radiative flux at an arbitrary depth in the ocean is parameterized by

I(z) = I(0)
[
Rez/ζ1 + (1 −R)ez/ζ2

]
, (A.12)

as done by Rosati and Miyakoda [1988 ], where I(0) = (1 − αS)QdSW is its value at z = 0. Here, shortwave
radiation is split into two portions: one is a fast-attenuating spectral portion and the other is a deeply
penetrating spectral portion, and these two portions attenuate with length scales of ζ1 and ζ2, respectively.
The fraction of the fast-attenuating portion is represented by R. These parameters depend on turbidity of
seawater (such as phytoplankton concentration) and also on a spectrum of shortwave radiation.

A.1.3 Bulk Formula-Based Sea Surface Temperature Restore

Sea surface heat flux is nonlinearly dependent on sea surface temperature in (A.11). When it is linearized
around TS, its can be written in the form of

FH = γ(TS − T ∗
A), (A.13)

as described by Haney [1971 ]. When a dataset required for (A.11) is specified, γ and T ∗
A are uniquely

determined. This representation is formally identical to (A.1): just replacing τR and T∗ by ρ0CpΔz1/γ and
T ∗
A, respectively, results in (A.13).

A.2 Freshwater Flux

A.2.1 Sea Surface Salinity Restore

OGCMs in early times are formulated under the rigid lid approximation, where sea level is not allowed to
change. Volume of seawater is not allowed to change in such OGCMs, so sea surface salinity is directly
modified by taking account of virtual salt flux. The easiest and most widely used way to specify virtual salt

2Saturation specific humidity depends also on pressure.
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flux is Newtonian damping of sea surface salinity to observed values, as in the case of heat flux. Let S1 be
salinity of the model’s top level and S∗ be observed sea surface salinity to which S1 is restored. Virtual sea
surface salinity flux FS is estimated by

FS =
(S1 − S∗)Δz1

τR
, (A.14)

and it is applied as a surface boundary condition for salinity equation:

∂S

∂z

∣∣∣∣
surface

= −FS . (A.15)

The time constant is usually chosen to be the same as in heat flux. The time discretization method should
also follow that of heat flux.

This sea surface salinity restore method can also be applied to free surface OGCMs, either as virtual
salinity flux or as equivalent freshwater flux, the latter of which is the default method adopted in COCO
when sea ice is not coupled. In the former method, S1 is directly changed with setting sea surface freshwater
flux to zero. For the latter method, equivalent freshwater flux FW is obtained by

FW = −FS
S1
, (A.16)

and sea level and sea surface salinity are modified at the same time in a consistent way. The sign of FW is
so defined that sea level is lowered when FW > 0, as in section 3.2.3. There is no guarantee that long-term
mean of globally averaged FW becomes zero, so mean sea level of model ocean could increase or decrease
unboundedly in the course of model integration. In order to avoid this drift, FW should be adjusted so that
its global average becomes zero at every time step, for example.

The problems noted above for the sea surface temperature restore are also true for the sea surface salinity
restore. Furthermore, the actual sea surface freshwater flux does not directly depend on sea surface salinity,
while the restoring method makes them directly related.

A.2.2 Drive Directly by Freshwater Flux

The actual sea surface freshwater flux is made up of evaporation (or sublimation), precipitation, and runoff
from land. Evaporation could be either prescribed by observation or calculated in a way consistent with
(A.9). In the latter case, the evaporative freshwater flux is represented by QLH/L. Precipitation and runoff
does not directly depend on sea surface condition, so they should be simply prescribed. In this case, too,
long-term mean of globally averaged FW does not become zero in general, so it must be adjusted somehow
to avoid model drift.

Since sea surface freshwater flux thus specified is not directly related to seawater salinity, its direct
application could result in severe drift of simulated salinity. For the purpose of preventing such drift, weak
restore of sea surface salinity to observed values is sometimes applied in conjunction with observation-based
freshwater flux.

A.3 Momentum Flux

Sea surface momentum flux is often referred to as surface wind stress. The most widely adopted way to
dynamically drive OGCMs is to directly specify a dataset of surface wind stress, and it is the default setup
of COCO.
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When a dataset of surface winds is specified, on the other hand, surface wind stress is calculated by using
a bulk formula, as in the case of sensible and latent heat fluxes. It is generally represented by

(τx, τy) = ρACM (uA, vA), (A.17)

where uA and vA are x and y components, respectively, of surface winds. The coefficient CM has the
dimension of length per time, and is usually regarded as proportional to scalar wind speed:

CM = CM0

√
u2
A + v2

A, (A.18)

where CM0 is a nondimensional coefficient, dependent on surface air conditions in usual bulk formulae. The
coefficients CS and CL in (A.8) and (A.9) are usually expressed in such a way, too.





Appendix B

Coupling to Sea Ice Model

For the purpose of global ocean modeling, COCO is coupled to a sea ice model in most cases. A relatively
simple sea ice model actually used in such cases is described here. It is based on two-category thickness
representation, zero-layer thermodynamics [e.g., Semtner, 1976 ], and dynamics with elastic-viscous-plastic
rheology [Hunke and Dukowicz, 1997 ].

There are five prognostic variables in the sea ice model described herein: sea ice concentration AI , which
is area fraction of a grid covered by sea ice and takes a value between zero and unity; mean sea ice thickness
hI over ice-covered part of a grid; mean snow thickness hS over sea ice; and x and y direction horizontal
velocity components of sea ice motion uI and vI . The model calculates temperature at snow top (sea ice
top when there is no snow cover) TI , which is a diagnostic variable. Density of sea ice (ρI) and snow (ρS)
are assumed to be constant. Sea ice is assumed to have nonzero salinity, and its value SI is assumed to be
a constant parameter.

B.1 Thermodynamics

Let us consider here a case that the model is integrated from the n-th time level to the (n+1)-th time level.
AI , hI and hS are incrementally modified in the following order. See Figure B.1 for a schematic illustration
of related variables and heat fluxes.

B.1.1 Heat Flux and Growth Rate

Temperature at sea ice base is taken to be the ocean model’s top level temperature T1. In this model,
sea ice exists only when and where T1 is at the freezing point Tf , which is a decreasing function of salinity
(Tf = −0.0543S is used in COCO, where temperature and salinity are measured by ◦C and psu, respectively).
In heat budget calculation for snow and sea ice, only latent heat of fusion and sublimation is taken into
account, and heat content associated with temperature is neglected. Therefore, temperature inside sea ice
and snow are not calculated, and TI is estimated from surface heat balance.

Nonzero minimum values are prescribed for AI and hI , which are denoted by Amin
I and hmin

I , respectively.
These parameters define a minimum possible volume of sea ice in a grid. If a predicted volume AIhI is less
than that minimum, AI is reset to zero, and T1 is lowered to compensate the corresponding latent heat. In
this case, the ocean model’s top level is kept at a supercooled state. Such a state continues until the ocean
is further cooled and the temperature becomes low enough to produce more sea ice than that minimum by
releasing the latent heat corresponding to the supercooling.
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Figure B.1: Sea ice variables and heat fluxes.

Surface heat flux is separately calculated for each of air-sea and air-ice interfaces in one grid. Let us
define QAI by

QAI = AIQ, (B.1)

i.e., air-ice heat flux multiplied by the factor of sea ice concentration. Q is calculated by (A.11) by setting
TS = TI and using relevant values for the parameters therein. Penetration of shortwave radiation is not
taken into account for ice-covered region. Assuming constant heat conductivity, vertical temperature profile
in sea ice and snow is linear, so vertical heat flux through sea ice and snow, multiplied by the factor of sea
ice concentration, is

QIO = AI
kIkS(T1 − TI)
kIhS + kShI

, (B.2)

where kI and kS are heat conductivity for sea ice and snow, respectively. TI is determined such that

QAI = QIO (B.3)

is satisfied. However, when the estimated TI exceeds the melting point of sea ice Tm (which is set to 0◦C for
convenience), TI is reset to Tm, and QAI and QIO are re-estimated by using it. The heat imbalance between
QAI and QIO is consumed to melt snow (sea ice when there is no snow cover). Snow growth rate due to
this heat imbalance is estimated by

WAS =
QAI −QIO
ρOLf

, (B.4)

where ρO is density of seawater and Lf is the latent heat of fusion (the same value is applied to snow and
sea ice). This growth rate is expressed as a change of equivalent liquid water depth per unit time. It is zero
when TI < Tm and negative when TI = Tm. Note that WAS is weighted by sea ice concentration.

Although it is assumed that T1 = Tf when sea ice exists, T1 could deviated from Tf due to a change
of salinity or other factors. Such deviation should be adjusted by forming or melting sea ice. Under a
temperature deviation

ΔT = T1 − Tf , (B.5)

sea ice growth rate necessary to compensate it in a single time step is given by

WFZ = −CpΔTΔz1
LfΔt

, (B.6)

where Cp is the heat capacity of seawater and Δz1 is the thickness of the ocean model’s top level. This growth
rate is estimated at all grids, irrespective of sea ice existence, for a technical reason. As described below,
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this growth rate first estimates negative ice volume for ice-free grids, but the same heat flux calculation
procedure as for ice-covered grids finally results in the correct heat flux to force the ocean. Basal growth
rate of sea ice is given by

WIO = AIWFZ +
QIO
ρOLf

, (B.7)

where, again, WIO is weighted by sea ice concentration.
Sea ice formation could also occur in ice-free area. Let us define QAO by

QAO = (1 −AI)
[
Q− (1 − αS)QdSW

]
, (B.8)

i.e., air-sea heat flux except for shortwave, multiplied by the factor of the fraction of ice-free area. Here, Q
is calculated by (A.11) by setting TS = T1. Shortwave radiation absorbed at ice-free sea surface, with the
factor of ice-free area multiplied, is represented by

QASW = (1 −AI)(1 − αS)QdSW . (B.9)

Sea ice growth rate in ice-free area is calculated by

WAO = (1 −AI)WFZ +
QAO + c1Q

A
SW

ρOLf
, (B.10)

where c1 denotes the fraction of QASW absorbed by the ocean model’s top level, which is calculated from
(A.12) as

c1 =
I(0) − I(−Δz1)

I(0)
. (B.11)

The growth rate WAO is weighted by the fraction of ice-free area.

B.1.2 Sublimation of Sea Ice

Sublimation (freshwater) flux FSBW is calculated or prescribed over ice cover. In the model, it is also weighted
by sea ice concentration. For example, when it is calculated in a way consistent with surface latent heat flux
QLH , it is given by

FSBW =
AIQLH
ρOLs

, (B.12)

where Ls is the latent heat of sublimation, which is the sum of the latent heat of fusion and evaporation. Its
sign is defined such that snow or ice is reduced when FSBW > 0. Evaporation (freshwater) flux FEVW is also
weighted by the fraction of ice-free area. For the same example as the above, it is given by

FEVW =
(1 −AI)QLH

ρOLe
, (B.13)

where Le is the latent heat of evaporation.
Sublimation flux is first consumed to reduce snow thickness:

h′S = hnS − ρOF
SB
W Δt

ρSAnI
. (B.14)

If h′S becomes less than zero, it is reset to zero. Then, FSBW is redefined by

FSB′
W = FSBW +

ρSA
n
I (h

′
S − hnS)

ρOΔt
. (B.15)



74 CCSR OCEAN COMPONENT MODEL (COCO)

When there remains snow, FSB′
W = 0. Nonzero FSB′

W is then consumed to reduce sea ice thickness:

h′I = hnI − ρOF
SB′
W Δt
ρIAnI

. (B.16)

If h′I becomes less than hmin
I , it is reset to hmin

I . Then, FSBW is redefined by

FSB′′
W = FSB′

W +
ρIA

n
I (h′I − hnI )
ρOΔt

. (B.17)

Finally, nonzero FSB′′
W is consumed to reduce sea ice concentration:

A′
I = AnI − ρOF

SB′′
W Δt

ρIhmin
I

. (B.18)

If A′
I becomes less than zero, it is reset to zero. Even if A′

I becomes less than Amin
I , on the other hand, it is

not adjusted here. If A′
I is adjusted to zero, it means that the sublimation flux is not used up by eliminating

snow and sea ice. The remaining part is consumed to reduce seawater, so the evaporation flux is modified as

FEV ′
W = FEVW + FSB′′

W +
ρI(A′

I −AnI )h
min
I

ρOΔt
. (B.19)

The last two terms cancel out if the adjustment does not take place.
When sublimation flux is consumed to reduce sea ice amount, salt contained in sea ice has to be added to

the remaining sea ice or the underlying water. Otherwise, total salt of the ice-ocean system is not conserved.
Here, it is added to the underlying water, and the way of this adjustment is described later. Note that sea ice
tends to gradually drain high salinity water contained in brine pockets in reality. Thus, such an adjustment
is not very unreasonable. When A′

I is adjusted to zero, on the other hand, the remaining sublimation flux is
consumed to reduce seawater. In this case, difference between the latent heat of sublimation and evaporation
has to be adjusted, which is also described later.

B.1.3 Dynamical Redistribution

AI , hI and hS are modified due to horizontal motion and freezing of ice-free surface, whose formulation is
described in section B.2.1. First, A′

I is modified to A∗
I by using (B.40), with an adjustment that A∗

I is reset
to zero if it becomes less than Amin

I and is bounded by unity. Changes of sea ice volume VI and snow volume
VS , which are defined by

VI = AIhI , VS = AIhS , (B.20)

are then estimated by using (B.41). The prediction is initiated by

V ′
I = A′

Ih
′
I , V ′

S = A′
Ih

′
S , (B.21)

and their predicted values are denoted by V ∗
I and V ∗

S . Note that VI and VS are conserved quantities, while
AI , hI and hS are not.

B.1.4 Growth and Melting

Changes of snow thickness due to snowfall (freshwater) flux FSNW (expressed by negative values to be con-
sistent with other freshwater flux components) is first taken into account. FSNW is not weighted by sea ice
concentration or ice-free area fraction, as snowfall takes place for both regions. If the newly predicted sea



B. COUPLING TO SEA ICE MODEL 75

ice concentration A∗
I is zero, the amount of snow existed before the dynamical redistribution is added to the

snowfall flux, and snow thickness is set to zero:

FSN ′
W = FSNW − ρSV

′
S

ρOΔt
, (B.22)

V ∗∗
S = 0. (B.23)

Otherwise, snowfall accumulates over the ice covered region, and the snowfall flux is reduced by that amount:

FSN ′
W = (1 −A∗

I)F
SN
W , (B.24)

V ∗∗
S = V ∗

S − A∗
IρOF

SN
W Δt

ρS
. (B.25)

Next, WAS is used to reduce snow. Snow thickness is modified by

h∗∗S =
V ∗∗
S

A∗
I

+
ρOWASΔt
ρSA∗

I

. (B.26)

If A∗
I = 0 or h∗∗S < 0, h∗∗S is reset to zero. Then, WAI is estimated by

WAI = WAS − ρS(A∗
Ih

∗∗
S − V ∗∗

S )
ρOΔt

. (B.27)

It is zero when h∗∗S is not reset to zero.
Then, WAI is used to reduce sea ice:

V ∗∗
I = V ∗

I +
ρOWAIΔt

ρI
. (B.28)

If V ∗∗
I becomes less than zero, it is reset to zero, and the imbalance is added to WIO:

W ∗
IO = WIO +WAI − ρI(V ∗∗

I − V ∗
I )

ρOΔt
, (B.29)

which is equal to WIO when V ∗∗
I is not reset to zero.

Finally, basal ice growth WIO and freezing of ice-free surface WAO is taken into account:

V n+1
I = V ∗∗

I +
ρO(W ∗

IO +WAO)Δt
ρI

. (B.30)

If V n+1
I becomes less than zero, define

An+1
I = 0, hn+1

I = hmin
I , hn+1

S = 0. (B.31)

Otherwise,

An+1
I = A∗

I , hn+1
I =

V n+1
I

An+1
I

, hn+1
S = h∗∗S . (B.32)

However, if hn+1
I becomes less than hmin

I , they are redefined by

An+1
I =

V n+1
I

hmin
I

, hn+1
I = hmin

I . (B.33)

Here, hn+1
S is not modified, so snow on the disappearing ice is regarded as falling onto the created ice-free

sea surface. An+1
I is further adjusted to be zero when it is less than Amin

I .
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B.1.5 Heat and Freshwater Fluxes Passed to the Ocean

Sea surface heat flux FH applied to (1.58) is given by

FH = −LfρOWFZ − LfρI(An+1
I hn+1

I − V n+1
I )

Δt
− LfρS(An+1

I hn+1
S −A∗

Ih
∗∗
S )

Δt

−LfρOFSN ′
W − Lf

[
ρOF

SB′′
W +

ρI(A′
I −AnI )h

min
I

Δt

]
. (B.34)

The second term is nonzero only when An+1
I is zero, including the case that it is so adjusted because of the

constraint of Amin
I . Sea ice formation and melting does not affect temperature of the underlying water as long

as its temperature is at the freezing point, so it does not contribute to FH . In the case of sea ice formation in
an originally ice-free grid, the heat flux needed to lower T1 to Tf is accounted for by the first term. When sea
ice disappears over the considered time interval, V n+1

I becomes negative, while the final An+1
I becomes zero.

So, the second term represents heating (negatively contributing to FH) of the underlying water in this case.
In the case that an ice-free grid remains to be so, the sum of the first two terms represents QAO + c1Q

A
SW .

In this case, too, the estimated ice volume V n+1
I is negative. The third term becomes nonzero only when

snow cover on sea ice is judged to fall onto the underlying water. The fourth term represents the latent heat
of fusion of the snowfall onto ice-free surface. The last term represent the necessary adjustment noted in
section B.1.2. Note that the portion of the shortwave radiative flux absorbed by the ocean model’s top level
is included in this FH . The remaining part of the shortwave radiation should separately be applied to lower
levels.

Sea surface freshwater flux FW is

FW = FEV ′
W + FSN ′

W + FRNW + FROW

+
ρS(An+1

I hn+1
S − V ∗

S )
ρOΔt

+
ρI(An+1

I hn+1
I − V ∗

I )
ρOΔt

, (B.35)

where FRNW and FROW are rainfall and continental runoff (freshwater) fluxes, respectively. These fluxes also
take negative values in the current definition. Neither sublimation nor dynamical redistribution of snow and
sea ice yields freshwater flux at the sea surface. Therefore, the freshwater flux due to changes in snow and
sea ice is estimated by comparing the final amounts of sea ice and snow with those right after the dynamical
redistribution.

Sea surface salinity flux FS is

FS = SI

[
ρI(An+1

I hn+1
I − V ∗

I )
ρOΔt

+
ρIA

n
I (h′I − hnI )
ρOΔt

+
ρI(A′

I −AnI )hmin
I

ρOΔt

]
. (B.36)

Its first term accounts for contribution of melting or formation of sea ice, and the second and third terms for
the adjustment due to sublimation of sea ice. Modification of salinity due to this salinity flux is represented
by

ΔS1

Δt
= − FS

Δz1
, (B.37)

where ΔS1 represents a change of salinity for the ocean model’s top level over one time step. Note that
FS does not (directly) represent the effect of brine rejection under sea ice formation, but rather represents
moderation of brine rejection due to salt trapped in sea ice. The salinity-raising effect of sea ice formation
is accounted for by salinity condensation associated with FW , and nonzero FS works to moderate the effect
of FW .
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B.1.6 Empirical Parameterization

A large part of sea ice exist below sea level in reality. If snow thickness is large enough, ice-snow interface
could come below sea level. Snow-ice is formed in such a case in reality. To mimic it in the model, excessive
snow cover is removed and dumped into the ocean. The depth of ice bottom measured from the sea surface
is

ρShS + ρIhI
ρO

, (B.38)

so the maximum snow thickness hmax
S which does not cause submersion of ice-snow interface is

hmax
S =

ρO − ρI
ρS

hI . (B.39)

After the prediction of snow thickness by the procedure described in section B.1.4, hn+1
S is adjusted by this

constraint. The reduced amount of snow is taken into account in the heat and freshwater fluxes described
in section B.1.5. The latent heat of fusion lowers T1, which results in a supercooled state, and it eventually
cause sea ice formation compensating that latent heat at the next time level.

Coarse resolution sea ice models tend to underestimate leads, especially when high-frequency forcing
variations are neglected. In order to parameterize existence of leads, sea ice concentration is kept under
a prescribed maximum value Amax

I . It is realized simply by limiting AI by Amax
I at the timing when the

adjustment of AI by Amin
I is considered in the above.

B.2 Dynamics

B.2.1 Horizontal Ice Transport

Sea ice horizontal velocity does not satisfy the two-dimensional continuity equation. Its divergence means
opening of ice cover, and its convergence in a compactly packed region means ridging. Convergent flow is
suppressed in a compactly packed region due to mechanical resistance, especially when ice is thick. Such an
effect is taken into account by the internal stress term of the momentum equations described later.

Prognostic equations for sea ice concentration and thickness are

∂AI
∂t

+
1

hxhy

[
∂

∂x
(hyuIAI) +

∂

∂y
(hxvIAI)

]
=

ΦρOWAO

ρIhI
, (B.40)

∂VI
∂t

+
1

hxhy

[
∂

∂x
(hyuIVI) +

∂

∂y
(hxvIVI)

]
= 0, (B.41)

following Mellor and Kantha [1989 ]. Harmonic and biharmonic diffusion terms are added to the right
hand sides for numerical stability. Snow thickness is predicted by the same form of equation as (B.41).
Thermodynamic change of sea ice is not included here, which is taken into account by the procedure described
in section B.1, except for the change in concentration due to freezing of ice-free surface.

The factor Φ multiplied to the sea ice growth rate over ice-free surface is an empirical parameter relating
heating/cooling of ice-free surface to change in concentration. When it is unity, heating/cooling of ice-free
surface does not affect thickness, which means that it adds or removes sea ice of the same thickness as the
already existing one. When it is zero, on the other hand, heating/cooling of ice-free surface does not affect
concentration but only changes thickness. For the case of new ice formation over ice-free surface (WAO > 0),
thin new ice is expected to be formed there. Then, it is reasonable to think that mean thickness is reduced
because newly added sea ice is thinner than the already existing one. In this case, therefore, Φ should be
larger than unity. For the case of heating of ice-free surface (WAO < 0), on the other hand, it is expected
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that some of the absorbed heat is used to warm seawater well below the surface, and it induces basal melting
of the already existing sea ice. In this case, Φ should be smaller than unity.

B.2.2 Momentum Equation

The momentum equations are represented by

∂

∂t
(VIuI) +

1
hxhy

[
∂

∂x
(hyuIVIuI) +

∂

∂y
(hxvIVIuI)

]
+ hxyVIuIvI − hyxVIvIvI − fVIvI

= −VIg
hx

∂η

∂x
+
AI(τAIx − τIOx)

ρI
+
Fx
ρI
, (B.42)

∂

∂t
(VIvI) +

1
hxhy

[
∂

∂x
(hyuIVIvI) +

∂

∂y
(hxvIVIvI)

]
+ hyxVIuIvI − hxyVIuIuI + fVIuI

= −VIg
hy

∂η

∂y
+
AI(τAIy − τIOy)

ρI
+
Fy
ρI
, (B.43)

where τAIx and τAIy are x and y components, respectively, of wind stress over sea ice, which are given as
described in section A.3. On the other hand, τIOx and τIOy are stress components at ice-ocean interface.
They are calculated by

τIOx = ρOCW
√

(uI − uO)2 + (vI − vO)2 [(uI − uO) cos θ − (vI − vO) sin θ] , (B.44)

τIOy = ρOCW
√

(uI − uO)2 + (vI − vO)2 [(vI − vO) cos θ + (uI − uO) sin θ] , (B.45)

where CW is a nondimensional drag coefficient, uO and vO are x and y, respectively, components of oceanic
horizontal velocity at a referenced level, and θ is a rotation angle of the effective ocean flow direction
interacting with sea ice. The level of reference should be selected as the depth where geostrophic flow is
realized (i.e., base of the surface Ekman layer). Since ice keel interacts with ocean flows at various depths,
the rotation angle is not easily determined from theory but given as an empirical/experimental parameter
[McPhee, 1978 ]. Since the rotation angle is associated with the surface Ekman flow, the sign of θ is oppsite
between the Northern and Southern Hemispheres.

The ice-ocean drag term works as damping of sea ice velocity toward the referenced ocean velocity, and
its time scale is estimated by

ρIhI

ρOCW
√

(uI − uO)2 + (vI − vO)2
. (B.46)

If its value is larger than the time step of model integration Δt, the ice-ocean drag term must be integrated
by the backward-in-time method. Since sea ice motion is strongly coupled to upper ocean currents, which
means that velocity difference between sea ice and upper ocean is small, this damping time scale could easily
exceed Δt for most applications.

The last terms of the right hand sides of (B.42) and (B.43) represent the force related to mechanical
deformation of sea ice, and are often referred to as internal stress terms. They are represented by divergence
of internal stress σ as

Fx =
1

hxhy

[
∂

∂x
(hyσxx) +

∂

∂y
(hxσxy)

]
+ hxyσyx − hyxσyy, (B.47)

Fy =
1

hxhy

[
∂

∂x
(hyσyx) +

∂

∂y
(hxσyy)

]
+ hyxσxy − hyxσxx. (B.48)

Under the elastic-viscous-plastic sea ice rheology, the constitutive equation is represented by

1
E

∂σxx
∂t

+
1
2η
σxx +

η − ζ

4ηζ
(σxx + σyy) +

P

4ζ
= εxx, (B.49)
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1
E

∂σyy
∂t

+
1
2η
σyy +

η − ζ

4ηζ
(σxx + σyy) +

P

4ζ
= εyy, (B.50)

1
E

∂σxy
∂t

+
1
2η
σxy = εxy, (B.51)

where ε is strain rate tensor. Here, σxy = σyx holds, as strain rate tensor is symmetric (see below). In
numerically solving these equations, the regular time step Δt is split into a number of shorter intervals, and
time integration with a shorter time step Δts is repeated. In their time integration, the backward-in-time
method is used. The components of strain rate tensor are represented by

εxx =
1
hx

∂uI
∂x

+ hxyvI , (B.52)

εyy =
1
hy

∂vI
∂y

+ hyxuI , (B.53)

εxy = εyx =
1
2

[
hx
hy

∂

∂y

(
uI
hx

)
+
hy
hx

∂

∂x

(
vI
hy

)]
. (B.54)

The parameters for plasticity are given by

P = P0VI exp [−C(1 −AI)] , (B.55)

ζ =
P

2Δ
, (B.56)

η =
ζ

e2
, (B.57)

Δ =

√(
1 +

1
e2

)
(ε2xx + ε2yy) + 2

(
1 − 1

e2

)
εxxεyy +

4
e2
εxyεyx, (B.58)

where P0 and C are the parameters governing resistance of ice against deformation, and e is the eccentricity
of an assumed elliptic yield curve. The plastic rheology is expressed by the form of two-dimensional nonlinear
viscosity, with ζ and η standing for bulk and shear viscosity, respectively. A minimum value is prescribed
for Δ to avoid numerical difficulty. When that minimum value is applied, this formulation results in linear
viscosity. Thus, it is called the viscous-plastic rheology. See Hibler [1979 ] for its detail.

The parameter for elasticity (Young’s modulus) E, on the other hand, is selected as

E =
2VIE0ρI

Δt2s
× min(h2

xΔx
2, h2

yΔy
2), (B.59)

where E0 is a nondimensional parameter, and its value should be between zero and unity. Elasticity is added
to the viscous-plastic rheology for a technical reason. Thick and compactly packed sea ice is hard, which
results in large values for ζ and η. Large viscosity makes it necessary to solve the internal stress terms by
the backward-in-time method1. Since the internal stress terms are nonlinearly dependent on velocity, the
backward-in-time method requires an iterative procedure. Introduction of elasticity relaxes this constraint
and makes it possible to explicitly solve the internal stress term, though it still has to be dealt with by the
time-splitting method. See Hunke and Dukowicz [1997 ] for its detail.

Momentum flux passed to the ocean model is calculated by

τx = AIτIOx + (1 −AI)τAOx, (B.60)

τy = AIτIOy + (1 −AI)τAOy, (B.61)

where τAOx and τAOy are components of wind stress over ice-free surface.
1A time step required for solving it by the forward-in-time method is as small as several seconds for typical ice thickness

and velocity.





Appendix C

The Equation of State for Seawater

C.1 International Equation of State for Seawater

C.1.1 IES80 Formula

The equation of state for seawater described here is the one determined by UNESCO Joint Panel on Oceano-
graphic Tables in 1980 [UNESCO, 1981 ], which is often referred to as IES80. Here, temperature t is measured
in ◦C, salinity S in practical salinity unit, pressure p in bars, and density in kilograms per cubic meter.

The density of pure water ρw at one standard atmosphere is given as a function of temperature t by

ρw(t) = 999.842594 + 6.793952 × 10−2t− 9.095290 × 10−3t2

+1.001685 × 10−4t3 − 1.120083 × 10−6t4 + 6.536332 × 10−9t5. (C.1)

The density of seawater at one standard atmosphere, which is indicated by p = 0, is given by

ρ(S, t, 0) = ρw + S(0.824493 − 4.0899 × 10−3t+ 7.6438 × 10−5t2

− 8.2467 × 10−7t3 + 5.3875 × 10−9t4)

+ S3/2(−5.72466 × 10−3 + 1.0227 × 10−4t− 1.6546 × 10−6t2)

+ 4.8314 × 10−4S2. (C.2)

The density at pressure p is given by

ρ(S, t, p) =
ρ(S, t, 0)

1 − p/K(S, t, p)
, (C.3)

where K is the secant bulk modulus. The secant bulk modulus for pure water at one standard atmosphere
is given by

Kw = 19652.21 + 148.4206t− 2.327105t2

+1.360477 × 10−2t3 − 5.155288 × 10−5t4. (C.4)

The secant bulk modulus for seawater at one standard atmosphere is given by

K(S, t, 0) = Kw + S(54.6746 − 0.603459t+ 1.09987 × 10−2t2

− 6.1670 × 10−5t3)

− S3/2(7.944 × 10−2 + 1.6483 × 10−2t− 5.3009 × 10−4t2). (C.5)
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Finally, the secant bulk modulus at pressure p is given by

K(S, t, p) = K(S, t, 0)

+p(3.239908 + 1.43713 × 10−3t+ 1.16092 × 10−4t2

− 5.77905 × 10−7t3)

+pS(2.2838 × 10−3 − 1.0981 × 10−5t− 1.6078 × 10−6t2)

+1.91075 × 10−4pS3/2

+p2(8.50935 × 10−5 − 6.12293 × 10−6t+ 5.2787 × 10−8t2)

+p2S(−9.9348 × 10−7 + 2.0816 × 10−8t+ 9.1697 × 10−10t2). (C.6)

C.1.2 Relationship Between Temperature and Potential Temperature

The temperature equation (1.5) is not for in situ temperature t but for potential temperature T , so it is
necessary to specify the relationship between the two quantities. According to Bryden [1973 ], it is given by

T = t

−p(3.6504 × 10−4 + 8.3198 × 10−5t− 5.4065 × 10−7t2

+ 4.0274 × 10−9t3)

−p(S − 35)(1.7439 × 10−5 − 2.99778 × 10−7t)

−p2(8.9309 × 10−7 − 3.1628 × 10−8t+ 2.1987 × 10−10t2)

+4.1057 × 10−9(S − 35)p2

−p3(−1.6056 × 10−10 + 5.0484 × 10−12t). (C.7)

C.1.3 Polynomial Approximation of the Equation of State

The IES80 formula guarantees the precision of less than 0.009 kg/m3 for the range −2 < t < 40, 0 < S < 42,
and 0 < p < 1000. However, the formula is a bit too complicated, nor is it directly applicable to the potential
temperature. For practical application of the equation of state in the model, it often suffices to considerably
limit the range of the variations of the variables, especially for S. For that case, some simpler expression for
the equation of state is accurate enough.

In COCO, the equation of state is represented by a polynomial approximation:

ρ = ρ0

+C1(T − T0) + C2(S − S0)

+C3(T − T0)2 + C4(T − T0)(S − S0) + C5(S − S0)2

+C6(T − T0)3 + C8(T − T0)2(S − S0)

+ C7(T − T0)(S − S0)2 + C9(S − S0)3, (C.8)

where T0 and S0 are some prescribed values of temperature and salinity defined at each vertical level, and ρ0

is the density of seawater at T = T0, S = S0, and the corresponding pressure. The coefficients (subscripted
Cs) are calculated for each vertical level. In their determination, some tens of sample values for T and S

are chosen from the typical range of variation, and the density for those samples are calculated by use of the
IES80 formula and the relationship between t and T . Then the least squares fitting is applied.
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C.2 Simpler Expressions for the Equation of State

Several computationally efficient, still accurate enough over a wide range of dependent variables, expressions
have been suggested. The following formula represent density as an explicit function of potential temperature,
so they can be directly used in OGCMs without further approximation. Beware that p in the following
formulae is measured by decibar.

C.2.1 Mellor [1991]

Density is expressed as a sum of potential density ρθ and a correction to it:

ρ(S, T, p) = ρθ(S, T ) + ρp(S, T, p), (C.9)

where the expression for potential density

ρθ = 999.842594

+6.793952 × 10−2T − 9.095290 × 10−3T 2

+1.001685 × 10−4T 3 − 1.120083 × 10−6T 4 + 6.536332 × 10−9T 5.

+S(0.824493 − 4.0899 × 10−3T + 7.6438 × 10−5T 2

− 8.2467 × 10−7T 3 + 5.3875 × 10−9T 4)

+S3/2(−5.72466 × 10−3 + 1.0227 × 10−4T − 1.6546 × 10−6T 2)

+4.8314 × 10−4S2 (C.10)

is the same as the IES80 formula. However, the correction term is much simplified:

ρp =
104p

c2

(
1 − 0.2p

c2

)
, (C.11)

where
c = 1449.2 + 1.34(S − 35) + 4.55T − 0.045T 2 + 0.00821p+ 15 × 10−9p2. (C.12)

C.2.2 McDougall et al., [2003]

Density is expressed by two polynomials

ρ(S, T, p) =
P1(S, T, p)
P2(S, T, p)

, (C.13)

where

P1 = 9.99843699 × 102

+7.3521284T − 5.45928211 × 10−2T 2 + 3.98476704 × 10−4T 3

+2.96938239S − 7.23268813 × 10−3ST + 2.12382341 × 10−3S2

+1.04004591 × 10−2p+ 1.03970529 × 10−7pT 2 + 5.18761880 × 10−6pS

−3.24041825 × 10−8p2 − 1.2386936 × 10−11p2T 2, (C.14)

P2 = 1

+7.28606739 × 10−3T − 4.60835542 × 10−5T 2

+3.68390573 × 10−7T 3 + 1.80809186 × 10−10T 4
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+2.14691708 × 10−3S − 9.27062484 × 10−6ST

−1.78343643 × 10−10ST 3 + 4.76534122 × 10−6S3/2 + 1.63410736 × 10−9S3/2T 2

+5.30848875 × 10−6p− 3.03175128 × 10−16p2T 3 − 1.27934137 × 10−17p3T. (C.15)



Appendix D

Basics of Tensor Analysis and Its
Physical Application

D.1 Definition of Tensor

D.1.1 Coordinate Transformation

Let xh (h = 1, ..., n) denote coordinates of an n-dimensional space1. Throughout this appendix, n always
denotes the total dimension of the considered space. Coordinate transformation in this space is defined by
a set of n functions of xh:

xj = xj(x1, ..., xn) (j = 1, ..., n), (D.1)

where xj (j = 1, ..., n) denote the new coordinates. Coordinate transformation (D.1) is hereafter represented
briefly by xj = xj(xh). Its inverse transformation consists of n functions of xj : xh = xh(xj).

In order for this coordinate transformation not to degenerate the dimension of the space, the nonsingu-
larity condition

∂(x1, ..., xn)
∂(x1, ..., xn)

�= 0 (D.2)

is required. Furthermore, the functions for coordinate transformation must satisfy

δhk =
∂xh

∂xj
∂xj

∂xk
(D.3)

or, equivalently,

δjl =
∂xj

∂xh
∂xh

∂xl
, (D.4)

where

δhk =
{

1 for h = k
0 otherwise (D.5)

and the sum rule2 is applied.

D.1.2 Tensor

A set of (r+s)-index symbols T h1...hr

k1...ks
(each of super- and subscripts varies from 1 to n), which represent a set

of nr+s values, constitutes components of an (r, s) tensor when they are transformed under the coordinate
1It should be described as “an n-dimensional manifold” for the sake of mathematical exactness.
2When an index j appears twice in a single term, it means a sum over j = 1, ..., n (

∑n

j=1
).
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transformation (D.1) as

T
j1...jr
l1...ls =

∂xj1

∂xh1
...
∂xjr

∂xhr

∂xk1

∂xl1
...
∂xks

∂xls
T h1...hr

k1...ks
. (D.6)

It is also called a tensor of rank (r, s). (0, 0) tensor is called scalar, (1, 0) tensor is called contravariant vector,
and (0, 1) tensor is called covariant vector. Scalar is invariant under any coordinate transformation. The
quantity δhk defined above, which is usually called Kronecker delta, is a (1, 1) tensor.

For two (r, s) tensors T h1...hr

k1...ks
and Sh1...hr

k1...ks
, a set of the sums of two corresponding components T h1...hr

k1...ks
+

Sh1...hr

k1...ks
also constitutes components of an (r, s) tensor. For an (r, s) tensor T h1...hr

k1...ks
and a (p, q) tensor Sj1...jpl1...lq

,
on the other hand, a set of the products of components

R
h1...hrj1...jp
k1...ksl1...lq

= T h1...hr

k1...ks
S
j1...jp
l1...lq

(D.7)

constitutes components of an (r + p, s+ q) tensor.
For an (r, s) tensor T h1...hr

k1...ks
(r, s ≥ 1), a set of sums of the components with varying two indices, one from

each of the superscripts and the subscripts, simultaneously from 1 to n (i.e., set hα = kβ = l for any α and
β satisfying 1 ≤ α ≤ r and 1 ≤ β ≤ s, and apply the sum rule) constitutes components of an (r − 1, s− 1)
tensor. This procedure of obtaining a tensor of a lower rank is called contraction (of indices).

D.1.3 Relative Tensor and Levi-Civita Symbols

A set of (r + s)-index symbols Λh1...hr

k1...ks
constitutes components of an (r, s) relative tensor of weight w when

they are transformed under the coordinate transformation (D.1) as

Λ
j1...jr
l1...ls = Jw

∂xj1

∂xh1
...
∂xjr

∂xhr

∂xk1

∂xl1
...
∂xks

∂xls
Λh1...hr

k1...ks
, (D.8)

where J is the Jacobian of the coordinate transformation defined by

J =
∂(x1, ..., xn)
∂(x1, ..., xn)

. (D.9)

For its special case, a quantity ψ is called a scalar density if it is transformed under the coordinate transfor-
mation (D.1) as

ψ = Jψ. (D.10)

An n-fold integral of a scalar density ψ is invariant under coordinate transformations (thus it is a scalar),
since ∫

ψdx1...dxn =
∫
Jψdx1...dxn =

∫
ψdx1...dxn. (D.11)

Conversely, a spatial integral of a scalar (tensor) is not a scalar (tensor) quantity.
Let us define n-index symbols εh1...hn and εh1...hn which satisfy

εh1...hn = εh1...hn =

⎧⎨
⎩

1 when (h1, ..., hn) is an even permutation of (1, ..., n)
−1 when (h1, ..., hn) is an odd permutation of (1, ..., n)
0 when any two of (h1, ..., hn) are identical

. (D.12)

They are called the Levi-Civita symbols (or the permutation symbols). The subscripted symbols εh1...hn

constitute components of a (0, n) relative tensor of weight −1, while the superscripted symbols εh1...hn

constitute components of an (n, 0) relative tensor of weight +1. Using the Levi-Civita symbols, determinant
of a matrix (ajh) is calculated by

det(ajh) = εj1...jna1j1 ...anjn . (D.13)
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D.2 Riemannian Geometry

D.2.1 Riemannian Metric

A (0, 2) tensor gjh defines a Riemannian metric in an n-dimensional space if it is symmetric

gjh = ghj (D.14)

and nonsingular

g = det(gjh) �= 0. (D.15)

In this case, the tensor gjh is called a metric tensor. Values of its components are, of course, dependent on
a selected coordinate system. A space endowed with a Riemannian metric is called a Riemannian space.
Riemannian metric defines a measure of length. Line element ds is defined by

ds2 = gjhdx
jdxh, (D.16)

and the length of a contravariant vector Xj is defined by

|X | =
√
gjhXjXh. (D.17)

Riemannian metric uniquely defines a covariant vector Zj from a contravariant vector Xh by

Zj = gjhX
h. (D.18)

When the length of Zj is defined by

|Z| =
√
gjhZjZh, (D.19)

it is identical to |X | because

glkX
lXk = glkg

lhZhg
jkZj = δhkZhg

jkZj = gjkZhZj , (D.20)

where gjh is a (2, 0) tensor uniquely defined from the metric tensor by

gjhg
jk = δkh. (D.21)

Components of gjk are calculated as components of the inverse of the matrix (gjk). Conversely, gjh uniquely
defines a contravariant vector from a covariant vector. Therefore, Xj and Zj so defined are considered to be
different expressions for the same quantity in the space under the Riemannian metric gjh. This procedure
of transformation between contravariant and covariant vectors is called raising/lowering of an index. Index
raising/lowering is also applicable to any super- or subscript of a tensor of any rank. Index raising/lowering
for relative tensors are differently defined. For example, the two kinds of Levi-Civita symbols are related to
each other by

εj1...jn = ggj1h1 ...gjnhnε
h1...hn . (D.22)

D.2.2 Christoffel Symbols and Covariant Differentiation

Three-index symbols γ j
h k defined by

γ j
h k = gjl

1
2

(
∂glk
∂xh

+
∂ghl
∂xk

− ∂ghk
∂xl

)
(D.23)
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are called Christoffel symbols of the Riemannian space under consideration. They are symmetric in terms
of interchange of the two subscripts, and its contraction of indices yields

γ k
j k =

1√
g

∂
√
g

∂xj
. (D.24)

Christoffel symbols do not constitute components of a tensor, as they do not follow the transformation
rule of a tensor (D.6). For an (r, s) tensor field T j1...jrl1...ls

, on the other hand, a quantity defined by

T j1...jrl1...ls|k =
∂T j1...jrl1...ls

∂xk
+

r∑
α=1

γ jα
m kT

j1...m...jr

l1...ls
−

s∑
β=1

γ
m

lβ kT
j1...jr
l1...m...ls

, (D.25)

where the index m in T j1...m...jr

l1...ls
(T j1...jrl1...m...ls

) is for the α-th superscript (β-th subscript), constitutes a com-
ponent of an (r, s + 1) tensor field. This quantity is called a covariant derivative3 of T j1...jrl1...ls

. Note that a
simple partial derivative ∂T j1...jrl1...ls

/∂xk does not constitute a component of a tensor.
Covariant differentiation of an (r, s) relative tensor field of weight w, whose components are denoted by

Λj1...jrl1...ls
, is defined by

Λj1...jrl1...ls|k =
∂Λj1...jrl1...ls

∂xk
+

r∑
α=1

γ jα
m kΛ

j1...m...jr

l1...ls
−

s∑
β=1

γ
m

lβ kΛ
j1...jr
l1...m...ls

− wγ h
k hΛ

j1...jr
l1...ls

, (D.26)

which yields an (r, s+ 1) relative tensor field of weight w.
Covariant differentiation of a metric tensor field is identically zero:

gjh|k = 0, gjh|k = 0. (D.27)

It is known as the Ricci’s identity. In successive covariant differentiation, the order of differentiation cannot
be swapped in general. For a contravariant vector field Xj, for example,

Xj
|h|k −Xj

|k|h = R j
l hkX

l, (D.28)

where

R j
l hk =

∂γ jl h
∂xk

− ∂γ j
l k

∂xh
+ γ j

m kγ
m
l h − γ j

m hγ
m
l k (D.29)

is called a curvature tensor. If and only if the curvature tensor is the zero tensor (all of its components are
zero, and thus it is the zero tensor under any coordinate system), the order of covariant differentiation can
freely be swapped. When the curvature tensor is the zero tensor, the space is called a flat space.

D.2.3 Descartes Coordinate System

When the components of the metric tensor are

gjh =
{

1 for j = h
0 otherwise , (D.30)

everywhere under the selected coordinate system, the coordinate system is called the Descartes coordinate
system. Under the Descartes coordinate system, length of a contravariant vector Xj is given simply by

|X |2 = (X1)2 + ...+ (Xn)2. (D.31)
3Covariant derivative is denoted by different symbols in different literature, such as T j1...jr

l1...ls,k
or ∂kT j1...jr

l1...ls
.
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Furthermore, components of the covariant vector

Zh = gjhX
j (D.32)

are identical to the corresponding components of the original contravariant vector:

Zj = Xj . (D.33)

Therefore, there is no distinction between covariance and contravariance in the Descartes coordinate system.
There is no guarantee that the Descartes coordinate system can be defined for any space. At any point

in a Riemannian space, however, there is always a linear coordinate transformation which yields

gjh =
{

1 for j = h
0 otherwise , (D.34)

at the selected point4. Such a transformation does not guarantee that the metric tensor is diagonalized
at other points. The coordinate system where (D.34) is realized at a point P is called a local Descartes
coordinate system at P . When there is a coordinate system in which (D.34) is satisfied everywhere (non-
local Descartes coordinate system), the space is flat and is also called Euclidean.

D.3 Orthogonal Curvilinear Coordinate System

A coordinate system where

gjh

{ �= 0 for j = h
= 0 otherwise (D.35)

holds is called an orthogonal curvilinear coordinate system (or simply a curvilinear coordinate system). A
local Descartes coordinate system is easily obtained at each point from an orthogonal curvilinear coordinate
system by just rescaling each coordinate. Let gαα be an α-th diagonal component of the metric tensor of an
orthogonal curvilinear coordinate system, and let xα denote its coordinate. Note that the sum rule is not
applied to Greek symbols here and hereafter. In this case, a so-called metric of the α-th coordinate hα is
defined by

(hα)2 = gαα. (D.36)

Let x̂α denote the local Descartes coordinate system generated from the orthogonal curvilinear coordinate
system xα. The coordinate transformation is described by

x̂α = hαx
α, (D.37)

infinitesimal displacement to a direction of one of the local Descartes coordinates is given by

dx̂α = hαdx
α, (D.38)

and the line element of the space is expressed by

ds2 =
n∑
α=1

gαα(dxα)2 =
n∑
α=1

(hαdxα)2 =
n∑
α=1

(dx̂α)2. (D.39)

For a contravariant vector whose components in the xα coordinate system are represented by Xα, its
corresponding components X̂α in the local Descartes coordinate system are

X̂α = hαX
α, (D.40)

4It is realized by rotation of the coordinate system which diagonalize the matrix (gjh).
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while components of a covariant vector whose components in the xα coordinate system are Zα are represented
by

Ẑα =
Zα
hα

(D.41)

in the local Descartes coordinate system. If Xα and Zα are related to each other by raising/lowering of
the index (D.18), it is guaranteed that X̂α and Ẑα are identical. As stated before, there is no distinction
between covariance and contravariance in the Descartes coordinate system, whether it is defined globally or
locally.

For a (2, 0) tensor whose components are expressed by Tαβ in an orthogonal curvilinear coordinate system
and related (1, 1) and (0, 2) tensors obtained by lowering the indices

Tαβ = gjβT
αj, Tαβ = ghαT

h
β , (D.42)

the corresponding components in the local Descartes coordinate system are obtained by

T̂αβ = hαhβT
αβ =

hα
hβ
Tαβ =

Tαβ
hαhβ

. (D.43)

Likewise, for an (r, s) tensor whose components in an orthogonal curvilinear coordinate system are denoted
by Tα1...αr

β1...βs
, its corresponding components in the local Descartes coordinate system are obtained by

T̂α1...αrβ1...βs =
hα1 ...hαr

hβ1 ...hβs

Tα1...αr

β1...βs
. (D.44)

Hereafter, local Descartes coordinates and components of tensors under a local Descartes coordinate system
are denoted by symbols with a hat, and their indices are always denoted by subscripts.

A covariant derivative of a scalar φ constitutes a component of a covariant vector:

Xj = φ|j =
∂φ

∂xj
. (D.45)

The corresponding expression for this operation in the local Descartes coordinate system is

X̂α =
Xα

hα
=

1
hα

∂φ̂

∂xα
, (D.46)

where φ̂ = φ. Note that the partial differentiation in the right hand side is in terms of the original curvilinear
coordinate, while the components of the tensors are expressed in the local Descartes coordinate system. That
is the very reason why the metric appears in this expression. When the differentiation is performed in terms
of the local Descartes coordinate, it simply yields an expression identical to (D.45):

X̂α =
∂φ̂

∂x̂α
. (D.47)

Covariant differentiation of a contravariant vector yields a (1, 1) tensor:

T jh = Xj
|h =

∂Xj

∂xh
+ γ j

k hX
k. (D.48)

The corresponding expression for this operation in the local Descartes coordinate system is

T̂αβ =
hα
hβ
Tαβ =

hα
hβ

(
∂Xα

∂xβ
+ γ α

k βX
k

)
=
hα
hβ

[
∂

∂xβ

(
X̂α

hα

)
+

n∑
δ=1

γ α
δ β

hδ
X̂δ

]
. (D.49)



D. TENSOR ANALYSIS AND ITS PHYSICAL APPLICATION 91

A successive operation of covariant differentiation and contraction in terms of that index is called divergence.
Divergence of a contravariant vector is represented by

divX = Xj
|j =

1√
g

∂

∂xj
(
√
gXj) =

n∑
α=1

1√
g

∂

∂xα

(√
g

hα
X̂α

)
, (D.50)

where
√
g =

n∏
α=1

hα. (D.51)

Christoffel symbols are expressed by coordinate metrics as

γ α
α α =

1
hα

∂hα
∂xα

(D.52)

γ α
β α = γ α

α β =
gαα

2
∂gαα
∂xβ

=
1
hα

∂hα
∂xβ

(D.53)

γ α
β β = −g

αα

2
∂gββ
∂xα

= −hβ
h2
α

∂hβ
∂xα

(D.54)

γ α
β δ = 0 (D.55)

where α �= β �= δ.

D.4 Tensoric Representation of Physical Quantities

D.4.1 How should physical quantities be defined as tensors?

If mass m of a substance does not depend on a selected coordinate system, m is a scalar quantity. Density
ρ is defined as a quantity whose spatial integral represents mass. So, ρ is a scalar density.

Though coordinates xk are represented by superscripted quantities, they do not constitute components of
a tensor, as they do not follow the transformation rule (D.6). On the other hand, infinitesimal displacement
dxk constitutes a component of a contravariant vector, as it is transformed as

dxk =
∂xk

∂xh
dxh. (D.56)

When coordinate values of a moving point are represented by xk = xk(t), where t is a parameter representing
time, velocity of the moving point defined by

vk = ẋk =
dxk

dt
(D.57)

constitutes a component of a contravariant vector.
Time evolution of a moving point, whose mass is m and velocity is vk, under an influence of force fk is

described in the Descartes coordinate system as

d

dt
(mvk) = fk. (D.58)

If the form of this equation is invariant under any coordinate transformation, fk in this expression must be
a contravariant vector. In this case, the equation is said to be described in a covariant form.

Note that you can freely exchange covariance and contravariance by raising or lowering indices with a
help of the metric tensor. Then, it is free to represent velocity of a moving point as a covariant vector (or to
transform between covariance and contravariance for any tensoric quantity). However, values of components
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differ depending on whether the velocity is represented as contravariant or covariant, unless the selected
coordinate system is Cartesian.

The continuity equation of incompressible fluid in the Descartes coordinate system is

∂vk

∂xk
= 0. (D.59)

If it is required (or proven by observations) that this equation is written in a covariant form, the differentiation
must be replaced by covariant differentiation:

vk|k = 0. (D.60)

It is written down as
∂vk

∂xk
+ γ k

m kv
m = 0, (D.61)

and its representation in the local Descartes coordinate system is
n∑

α=1

1√
g

∂

∂xα

(√
g

hα
v̂α

)
= 0. (D.62)

For the case of n = 3,

1
h1h2h3

[
∂

∂x1
(h2h3v̂1) +

∂

∂x2
(h3h1v̂2) +

∂

∂x3
(h1h2v̂3)

]
= 0. (D.63)

D.4.2 External Product and Curl Operation

Here, only the case of n = 3 is considered. For two contravariant vectors Xk and Y l, the contraction of the
products of the Levi-Civita symbols εjkl and them (εjklXkY l) yields a relative covariant vector of weight −1.
Likewise, for two covariant vectors Xk and Yl, the contraction of the products of the Levi-Civita symbols
εjkl and them (εjklXkYl) yields a relative contravariant vector of weight +1. Then, quantities

Zj =
√
gεjklX

kY l, (D.64)

Zj =
1√
g
εjklXkYl (D.65)

define the external product of the two vectors. The latter (former) is obtained by raising (lowering) the index
of the former (latter) by using the metric tensor when Xk and Xk (Y l and Yl) are so related. However, these
quantities are slightly different from (relative) tensors defined hereabove. Under a coordinate transformation,
their components are transformed like (D.6), but a factor of the sign of the Jacobian of the transformation
is multiplied. Their components are written down as

(Z1, Z2, Z3) =
√
g (X2Y 3 −X3Y 2, X3Y 1 −X1Y 3, X1Y 2 −X2Y 1), (D.66)

(Z1, Z2, Z3) =
1√
g
(X2Y3 −X3Y2, X3Y1 −X1Y3, X1Y2 −X2Y1), (D.67)

and both of them result in the same expression in the local Descartes coordinate system:

(Ẑ1, Ẑ2, Ẑ3) = (X̂2Ŷ3 − X̂3Ŷ2, X̂3Ŷ1 − X̂1Ŷ3, X̂1Ŷ2 − X̂2Ŷ1). (D.68)

Length of Zj and Zj defined above is given by

|Z|2 = gjhZjZh = gjhZjZh = ZjZ
j

= εjklε
jpqXkY lXpYq. (D.69)
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Here, the relationship

εjklε
jpq = δpkδ

q
l − δpl δ

q
k (D.70)

identically holds, so

|Z|2 = XkXkY
lYl −XkYkXlY

l = |X |2|Y |2 − (XkYk)2. (D.71)

The second term of its final expression is the square of the inner product of the vectors X and Y . The inner
product is also represented as

(X · Y ) = gjhX
jY h = gjhXjYh. (D.72)

For a covariant vector field Xl, its product with the Levi-Civita symbols and contraction of indices

Hjk = εjklXl (D.73)

yields a (2, 0) relative tensor field of weight +1, and its covariant differentiation and successive contraction
of the index

Hjk
|k =

∂Hjk

∂xk
+ γ j

m kH
mk + γ k

m kH
jm − γ m

k mH
jk (D.74)

yields a relative contravariant vector field of weight +1. The last two terms of the right hand side of (D.74)
are identical to each other, and its second term is identically zero because γ j

m k = γ j
k m and Hmk = −Hkm

(Hmk = 0 for m = k). Curl of the covariant vector field Xl is defined by

Rj = (curlX)j =
1√
g

∂Hjk

∂xk
. (D.75)

It has the same tensoric characteristics as (D.65). Their actual expressions are

(R1, R2, R3) =
1√
g

(
∂X3

∂x2
− ∂X2

∂x3
,
∂X1

∂x3
− ∂X3

∂x1
,
∂X2

∂x1
− ∂X1

∂x2

)
, (D.76)

and their representation in the Descartes coordinate system is

R̂1 =
1

h2h3

[
∂

∂x2
(h3X̂3) − ∂

∂x3
(h2X̂2)

]
, (D.77)

R̂2 =
1

h3h1

[
∂

∂x3
(h1X̂1) − ∂

∂x1
(h3X̂3)

]
, (D.78)

R̂3 =
1

h1h2

[
∂

∂x1
(h2X̂2) − ∂

∂x2
(h1X̂1)

]
. (D.79)

D.4.3 Tensoric Representation of Viscosity

Stress tensor σjk is defined as a (2, 0) tensor whose divergence represents force:

f j = σjk|k . (D.80)

Strain rate tensor εjk is a (2, 0) tensor defined by

εjk =
1
2

(
gjlvk|l + glkvj|l

)
, (D.81)

or, equivalently, a (0, 2) tensor defined by

εjk =
1
2

(
gjlv

l
|k + glkv

l
|j
)
. (D.82)
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Stress tensor and strain rate tensor are related to each other by a constitutive equation

σjk = cjklmεlm, (D.83)

where cjklm is a (4, 0) tensor.
For isotropic viscosity of an incompressible fluid, the constitutive equation is given by

τ jk = 2ηεjk, (D.84)

where η is a constant of proportionality, and

τ jk = σjk + Pgjk (D.85)

is deviatoric stress tensor, where P is mechanical pressure (isotropic component of the stress tensor) defined
by

P = − trσ
n
. (D.86)

By definition, trace of the deviatoric stress tensor is identically zero. Divergence of τ jk is expressed as

τ jk|k = (2ηεjk)|k = 2η|kεjk + 2ηεjk|k . (D.87)

For the second term of its last expression,

εjk|k =
1
2

(
gjlvk|l|k + glkvj|l|k

)
(D.88)

using the Ricci’s identity (D.27). In a flat space, furthermore,

vk|l|k = vk|k|l = 0, (D.89)

due to the facts that the curvature tensor is the zero tensor and the continuity equation holds, so

εjk|k =
1
2
glkvj|l|k. (D.90)

The covariant form of the Navier-Stokes equation is expressed as

∂vj

∂t
+ vkvj|k = −1

ρ
gjk

∂P

∂xk
+

1
ρ
τ jk|k . (D.91)

Its advection term is written down as

aj = vkvj|k = vk
(
∂vj

∂xk
+ γ j

m kv
m

)
, (D.92)

and its representation in the local Descartes coordinate system is

âα
hα

= aα =
∑
β

v̂β
hβ

∂

∂xβ

(
v̂α
hα

)
+
∑
β

∑
δ

γ α
β δ

hβhδ
v̂β v̂δ. (D.93)

Viscous force is calculated by

f j = τ jk|k =
∂τ jk

∂xk
+ γ j

m kτ
mk + γ k

m kτ
jm. (D.94)

For the local Descartes coordinate system,

f̂α = hαf
α, τ̂αβ = hαhβτ

αβ , (D.95)
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and
f̂α
hα

=
∑
β

∂

∂xβ

(
τ̂αβ
hαhβ

)
+
∑
β

∑
δ

γ α
β δ

hβhδ
τ̂βδ +

∑
β

1√
g

∂
√
g

∂xβ

τ̂αβ
hαhβ

. (D.96)

Components of strain rate tensor are represented as

ε̂αβ = hαhβε
αβ

=
hαhβ

2

(
gααvβ|α + gββvα|β

)

=
1
2
hβ
hα

[
∂

∂xα

(
v̂β
hβ

)
+
∑
δ

γ β
δ α

hδ
v̂δ

]
+

1
2
hα
hβ

[
∂

∂xβ

(
v̂α
hα

)
+
∑
δ

γ α
δ β

hδ
v̂δ

]
. (D.97)

D.4.4 Anisotropic viscosity for three-dimensional fluid

A constitutive equation for viscosity is usually described as a relation between deviatoric stress tensor and
strain rate tensor:

τ jk = cjklmεlm. (D.98)

For the three dimensional case, cjklm consists of 81 components. Because of the symmetry of τ and ε, the
coefficient has symmetries

cjklm = ckjlm = cjkml, (D.99)

which reduces the number of independent parameters from 81 to 36. The general form for the constitutive
equation can now be described as⎛

⎜⎜⎜⎜⎜⎜⎝

τ11
τ22
τ33
τ12
τ13
τ23

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

c1111 c1122 c1133 c1112 c1113 c1123

c2211 c2222 c2233 c2212 c2213 c2223

c3311 c3322 c3333 c3312 c3313 c3323

c1211 c1222 c1233 c1212 c1213 c1223

c1311 c1322 c1333 c1312 c1313 c1323

c2311 c2322 c2333 c2312 c2313 c2323

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

ε11
ε22
ε33
2ε12
2ε13
2ε23

⎞
⎟⎟⎟⎟⎟⎟⎠
. (D.100)

Note that the factor of 2 multiplied to ε12, ε13 and ε23 comes from the symmetry such as:

τ12 = c1211ε11 + c1222ε22 + c1233ε33 + c1212ε12 + c1221ε21 + c1213ε13 + c1231ε31 + c1223ε23 + c1232ε32

= c1211ε11 + c1222ε22 + c1233ε33 + 2c1212ε12 + 2c1213ε13 + 2c1223ε23 (D.101)

In order for energy dissipation rate, defined by

τ jkεjk = cjklmεjkεlm, (D.102)

to be well-defined, another symmetry arises:

cjklm = clmjk, (D.103)

which makes the coefficient matrix symmetric, and reduces the number of independent parameters to 21.
This is the most general representation for three-dimensional anisotropic viscosity.

When the fluid is isotropic about an axis directing to x3, the coefficient matrix reduces to⎛
⎜⎜⎜⎜⎜⎜⎝

c1 c2 c3 0 0 0
c2 c1 c3 0 0 0
c3 c3 c4 0 0 0
0 0 0 (c1 − c2)/2 0 0
0 0 0 0 c5 0
0 0 0 0 0 c5

⎞
⎟⎟⎟⎟⎟⎟⎠
. (D.104)
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See, for example, Love [1927 ]. Furthermore, when the fluid is incompressible, the zero-trace requirement for
the deviatoric stress tensor yields

0 = τ11 + τ22 + τ33

= (c1 + c2 + c3)(ε11 + ε22) + (2c3 + c4)ε33

= −(c1 + c2 + c3)ε33 + (2c3 + c4)ε33, (D.105)

and thus
c4 = c1 + c2 − c3. (D.106)

The constitutive equation is now described as

τ11 = (c1 − c3)ε11 + (c2 − c3)ε22, (D.107)

τ22 = (c2 − c3)ε11 + (c1 − c3)ε22, (D.108)

τ33 = (c1 + c2 − 2c3)ε33, (D.109)

τ12 = (c1 − c2)ε12, (D.110)

τ13 = 2c5ε13, (D.111)

τ23 = 2c5ε23. (D.112)

D.5 Three-Dimensional Polar Coordinate Example

To illustrate what are an orthogonal curvilinear coordinate system and its local Descartes coordinate system,
a well-known example of the polar coordinate system of the three-dimensional Euclidean space is considered
here. Let r, ϕ and λ denote radial distance, latitude and longitude, respectively, of the polar coordinate
system (latitude is used here instead of polar zenith angle). The metric tensor of the polar coordinate system
is diagonal, and those diagonal components are written as

grr = 1, gϕϕ = r2, gλλ = r2 cos2 ϕ. (D.113)

Velocity components of a moving point defined by

vr =
dr

dt
, vϕ =

dϕ

dt
, vλ =

dλ

dt
(D.114)

constitute components of a contravariant vector, where t is time, and the scalar magnitude of this velocity
is given by

|v|2 = (vr)2 + r2(vϕ)2 + r2 cos2 ϕ(vλ)2. (D.115)

The components of this velocity vector in the local Descartes coordinate system are

w = v̂r = hrv
r = vr, v = v̂ϕ = hϕv

ϕ = rvϕ, u = v̂λ = hλv
λ = r cosϕvλ, (D.116)

and its scalar magnitude is represented by

|v|2 = u2 + v2 + w2. (D.117)

Nonzero components of the Christoffel symbols are

γ r
ϕ ϕ = −r, (D.118)
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γ r
λ λ = −r cos2 ϕ, (D.119)

γ ϕ
r ϕ = γ ϕ

ϕ r = γ λ
r λ = γ λ

λ r =
1
r
, (D.120)

γ ϕ
λ λ = sinϕ cosϕ, (D.121)

γ λ
ϕ λ = γ λ

λ ϕ = − tanϕ, (D.122)

so the local Descartes coordinate expressions for the Navier-Stokes equations are

∂u

∂t
+

u

r cosϕ
∂u

∂λ
+
v

r

∂u

∂ϕ
+ w

∂u

∂r
− uv tanϕ

r
+
uw

r
= − 1

ρr cosϕ
∂P

∂λ
+

1
ρ
f̂λ, (D.123)

∂v

∂t
+

u

r cosϕ
∂v

∂λ
+
v

r

∂v

∂ϕ
+ w

∂v

∂r
+
u2 tanϕ

r
+
vw

r
= − 1

ρr

∂P

∂ϕ
+

1
ρ
f̂ϕ, (D.124)

∂w

∂t
+

u

r cosϕ
∂w

∂λ
+
v

r

∂w

∂ϕ
+ w

∂w

∂r
− u2 + v2

r
= −1

ρ

∂P

∂r
+

1
ρ
f̂r, (D.125)

where

f̂λ
η

=
1

r2 cos2 ϕ
∂2u

∂λ2
+

1
r2 cosϕ

∂

∂ϕ

(
cosϕ

∂u

∂ϕ

)
+

1
r2

∂

∂r

(
r2
∂u

∂r

)

+
2

r2 cosϕ
∂w

∂λ
− 2 sinϕ
r2 cos2 ϕ

∂v

∂λ
− u

r2 cos2 ϕ
, (D.126)

f̂ϕ
η

=
1

r2 cos2 ϕ
∂2v

∂λ2
+

1
r2 cosϕ

∂

∂ϕ

(
cosϕ

∂v

∂ϕ

)
+

1
r2

∂

∂r

(
r2
∂v

∂r

)

+
2 sinϕ
r2 cos2 ϕ

∂u

∂λ
+

2
r2
∂w

∂ϕ
− v

r2 cos2 ϕ
, (D.127)

f̂r
η

=
1

r2 cos2 ϕ
∂2w

∂λ2
+

1
r2 cosϕ

∂

∂ϕ

(
cosϕ

∂w

∂ϕ

)
+

1
r2

∂

∂r

(
r2
∂w

∂r

)

− 2
r2 cos2 ϕ

∂u

∂λ
− 2
r2 cos2 ϕ

∂(v cosϕ)
∂ϕ

− 2w
r2
, (D.128)

for homogeneous, isotropic viscosity.

D.6 Application to COCO

Let x and y be two horizontal coordinates and r be radial distance from the earth’s center. The metric in
the radial direction is

hr = 1, (D.129)

and the metrics for the horizontal coordinates are represented by a product of r and a function independent
of r:

hx = rh′x(x, y), hy = rh′y(x, y). (D.130)

Given the metrics hx and hy, nonzero components of the Christoffel symbols are calculated as

γ x
x x =

1
hx

∂hx
∂x

, (D.131)

γ y
y y =

1
hy

∂hy
∂y

, (D.132)

γ x
y x = γ x

x y =
1
hx

∂hx
∂y

, (D.133)

γ y
x y = γ y

y x =
1
hy

∂hy
∂x

, (D.134)
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γ x
r x = γ x

x r = γ y
r y = γ y

y r =
1
r
, (D.135)

γ x
y y = −hy

h2
x

∂hy
∂x

, (D.136)

γ y
x x = −hx

h2
y

∂hx
∂y

, (D.137)

γ r
x x = −hx ∂hx

∂r
= −h

2
x

r
, (D.138)

γ r
y y = −hy ∂hy

∂r
= −h

2
y

r
. (D.139)

The geopotential vertical coordinate z is defined as

r = a+ z, (D.140)

where a is the earth’s radius (the distance between the earth’s center and the mean sea surface). Infinitesimal
displacement in the z direction is identical to that in the r direction:

dr = dz, (D.141)

and the shallowness approximation
1
r

 1
a

(D.142)

is employed, as |z| 	 a.
The continuity equation of incompressible fluid is represented by

1
hxhy

[
∂

∂x
(hyu) +

∂

∂y
(hxv) +

∂

∂r
(hxhyw)

]
= 0, (D.143)

where u, v and w are velocity components for x, y and r directions, respectively. It is rewritten as

1
hxhy

[
∂

∂x
(hyu) +

∂

∂y
(hxv)

]
+

1
r2

∂

∂r
(r2w) = 0. (D.144)

Under the shallowness approximation, r and dr in its last term of the left hand side are replaced by a and
dz, respectively, thus yielding

1
hxhy

[
∂

∂x
(hyu) +

∂

∂y
(hxv)

]
+
∂w

∂z
= 0. (D.145)

The general representation of the frictional force in the current (x, y, r) coordinate system is:

fx =
1

hxhy

[
∂

∂x
(hyτxx) +

∂

∂y
(hxτxy) +

∂hx
∂y

τxy − ∂hy
∂x

τyy

]
+

1
r2

∂

∂r
(r2τxr) +

τxr
r
, (D.146)

fy =
1

hxhy

[
∂

∂x
(hyτxy) +

∂

∂y
(hxτyy) +

∂hy
∂x

τxy − ∂hx
∂y

τxx

]
+

1
r2

∂

∂r
(r2τyr) +

τyr
r
, (D.147)

fr =
1

hxhy

[
∂

∂x
(hyτxr) +

∂

∂y
(hxτyr)

]
+

1
r2

∂

∂r
(r2τrr) − τxx

r
− τyy

r
. (D.148)

The terms inside the square bracket of (D.146) can be rewritten as

∂

∂x

[
hy

(
τxx − τyy

2
+
τxx + τyy

2

)]
+

1
hx

∂

∂y
(h2
xτxy) +

∂hy
∂x

(
τxx − τyy

2
− τxx + τyy

2

)
. (D.149)

Using the fact that trace of deviatoric tensor is identically zero:

τxx + τyy + τrr = 0, (D.150)
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it reduces to
1
hy

∂

∂x

(
h2
y

τxx − τyy
2

)
+

1
hx

∂

∂y
(h2
xτxy) −

hy
2
∂τrr
∂x

. (D.151)

Therefore, (D.146) becomes

fx =
1

hxhy

[
1
hy

∂

∂x

(
h2
y

τxx − τyy
2

)
+

1
hx

∂

∂y
(h2
xτxy)

]
+

1
r2

∂

∂r
(r2τxr) +

τxr
r

− 1
2hx

∂τrr
∂x

. (D.152)

Likewise, (D.147) becomes

fy =
1

hxhy

[
1
hy

∂

∂x
(h2
yτxy) +

1
hx

∂

∂y

(
h2
x

τyy − τxx
2

)]
+

1
r2

∂

∂r
(r2τyr) +

τyr
r

− 1
2hy

∂τrr
∂y

. (D.153)

Components of strain rate tensor are defined by

εxx =
1
hx

∂u

∂x
+ hxyv +

w

r
, (D.154)

εyy =
1
hy

∂v

∂y
+ hyxu+

w

r
, (D.155)

εrr =
∂w

∂r
, (D.156)

εxy = εyx =
1
2

[
hx
hy

∂

∂y

(
u

hx

)
+
hy
hx

∂

∂x

(
v

hy

)]
, (D.157)

εxr = εrx =
1
2

(
∂u

∂r
+

1
hx

∂w

∂x
− u

r

)
, (D.158)

εyr = εry =
1
2

(
∂v

∂r
+

1
hy

∂w

∂y
− v

r

)
. (D.159)

For the case of horizontal-vertical transverse anisotropic viscosity (i.e., isotropy about the axis of symmetry
which coincides with the vertical direction), the constitutive equation is represented by using three parameters
AH , AV and ν:

τxx = (AH + ν)εxx + (ν −AH)εyy, (D.160)

τyy = (ν −AH)εxx + (AH + ν)εyy, (D.161)

τrr = 2νεrr, (D.162)

τxy = 2AHεxy, (D.163)

τxr = 2AV εxr, (D.164)

τyr = 2AV εyr, (D.165)

by setting

AH =
c1 − c2

2
, AV = c5, ν =

c1 + c2 − 2c3
2

(D.166)

in (D.107)–(D.112). See Wajsowicz [1993 ] for detail. In (D.152) and (D.153), τxx and τyy appear only as
their subtraction, τxx − τyy, for which the constitutive equation reduces simply to

τxx − τyy = 2AH(εxx − εyy). (D.167)

In this representation, the last term of the right hand sides of (D.154) and (D.155) cancels each other out.
With the shallowness approximation and consistency with the hydrostatic approximation (the latter leads
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to ν = 0 and means that the terms including w should be neglected), therefore, the frictional force terms
are represented by

fx =
1

hxhy

[
1
hy

∂

∂x

(
h2
y

τxx − τyy
2

)
+

1
hx

∂

∂y
(h2
xτxy)

]
+
∂τxz
∂z

+
τxz
a
, (D.168)

fy =
1

hxhy

[
1
hy

∂

∂x
(h2
yτxy) +

1
hx

∂

∂y

(
h2
x

τyy − τxx
2

)]
+
∂τyz
∂z

+
τyz
a
, (D.169)

where

τxx − τyy = 2AH(εxx − εyy), (D.170)

τxy = 2AHεxy, (D.171)

τxz = 2AV εxz, (D.172)

τyz = 2AV εyz, (D.173)

with the components of strain rate tensor redefined as

εxx =
1
hx

∂u

∂x
+ hxyv, (D.174)

εyy =
1
hy

∂v

∂y
+ hyxu, (D.175)

εxy = εyx =
1
2

[
hx
hy

∂

∂y

(
u

hx

)
+
hy
hx

∂

∂x

(
v

hy

)]
, (D.176)

εxz = εzx =
1
2

(
∂u

∂z
− u

a

)
, (D.177)

εyz = εzy =
1
2

(
∂v

∂z
− v

a

)
. (D.178)
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