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Abstract. The amplitude of the El Niño-Southern Oscillation (ENSO) is 1 

known to fluctuate in long records derived from observations and general 2 

circulation models (GCMs), even when driven by constant external forcings. 3 

This involves an interaction between the ENSO cycle and the background 4 

mean state, which affects the climatological precipitation over the eastern 5 

equatorial Pacific. The changes in climatological rainfall may be ascribed to 6 

several factors: changes in mean sea surface temperature (SST), changes in 7 

SST variability, and changes in the sensitivity of precipitation to SST. We 8 

propose a method to separate these effects in model ensembles. A case study 9 

with a single GCM demonstrates that the method works well, and suggests 10 

that each factor plays a role in changing mean precipitation. Applying the 11 

method to 16 pre-industrial control simulations archived in the Coupled 12 

Model Intercomparison Project phase 5 (CMIP5) reveals that the 13 

inter-model diversity in mean precipitation arises mostly from differences 14 

in the mean SST and atmospheric sensitivity to SST, rather than from 15 

differences in ENSO amplitude.   16 

 17 

1. Introduction 18 

    Realistic simulation of the El Niño-Southern Oscillation (ENSO) 19 

phenomenon using coupled general circulation models (GCMs) is of great 20 

importance for predicting ENSO and evaluating its impact on global 21 

weather. The ability to simulate an ENSO with properties (amplitude, 22 



 

3 
 

periodicity, spatial structure, phase asymmetry, etc) close to observations is 23 

a good test of a GCM. Despite improved ENSO simulations [AchutaRao and 24 

Sperber 2006], there was a large diversity in ENSO properties among the 25 

state of the art GCMs included in the Coupled Model Intercomparison 26 

Project phase 3 (CMIP3) [Guilyardi et al. 2009, Vecchi & Wittenberg 2010]. 27 

Errors in coupled feedback processes [Collins et al. 2010; Philip et al. 2010; 28 

Lloyd et al. 2011] are probably the major cause of the diversity of ENSO 29 

amplitudes among GCMs. However, the nonlinear nature of the coupled 30 

system makes it difficult to clarify how the error in a particular process 31 

affects ENSO and the mean state. In addition, intrinsic modulation can 32 

contribute to uncertainties in ENSO properties diagnosed from centennial 33 

and shorter records, such as the observed instrumental record and many 34 

climate simulations [Wittenberg 2009]. 35 

    ENSO is known to interact with other phenomena on a variety of time 36 

scales: the annual cycle [Jin et al. 1994; Guilyardi 2006], atmospheric 37 

disturbances [Vecchi et al. 2006; Jin et al. 2007], and decadal variability [An 38 

and Wang 2000; Choi et al. 2009], all of which also affect the mean state. 39 

Here, we loosely define the ‘mean state’ as a time average spanning a period 40 

much longer thanENSO’s interannual time scale. Changes in this 41 

background mean state can affect the growth rate and frequency of El 42 

Niño/La Niña, as has been clarified using a hierarchy of models [Jin 1997; 43 

Fedorov and Philander 2001, Wittenberg 2002]. ENSO can also feed back 44 



 

4 
 

onto the mean state: El Niño exhibits a different spatial pattern of SSTAs 45 

than does La Niña, leading to a net warming of the eastern equatorial 46 

Pacific and cooling of the western Pacific during active ENSO epochs [An 47 

and Jin 2004]. Climate variables having a skewed probability distribution, 48 

such as precipitation, also exhibit mean state changes in response to 49 

changes in ENSO amplitude [Watanabe et al. 2011]. 50 

To improve understanding of ENSO in complex GCMs, it is necessary to 51 

devise useful metrics and methods for evaluating ENSO [Guilyardi et al. 52 

2012]. Until now, there has been no simple method to isolate the ENSO 53 

feedback effect on changes in the tropical Pacific mean state. Here we 54 

propose such a method, using monthly time series of precipitation and SST 55 

from a sufficiently long simulation or an ensemble of simulations.  56 

 57 

2. Method and model ensembles 58 

    The precipitation (P) over the tropical region depends nonlinearly on 59 

the underlying SST (T) [Graham and Barnett 1987].  The climatological 60 

mean precipitation P  can be expressed as: 61 

           62 

    ,     (1) 63 

where p(X) denotes the probability distribution of X,  f is the probability 64 

density function (PDF) of T, and C(T) is the weighted-average composite of P 65 

with respect to T. In principle, the expression (1), hereafter referred to as 66 
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the PDF method, holds exactly everywhere, regardless of the degree of 67 

correlation or causal linkage between P and T.  68 

    Given an ensemble of realizations (e.g. from different models, or 69 

different forcing scenarios), we may define references, denoted as 0P , 0C ,  70 

and 0f , and derive an equation for deviations from them, ( )’;       71 

          ,   (2) 72 

where 0C  represents the typical shape of the precipitation composite and is 73 

obtained from the ensemble average of ( )C T , i.e., 0 ( )C C T . At extreme 74 

values of T, the 0C  defined this way will be representative of only one or 75 

two models, but fortunately those extreme values of T are, by definition, 76 

rarely visited by the models. We have further assumed that wherever f=0, 77 

i.e. at those values of T not sampled by the ensemble member, C can be 78 

approximated as C0, such that C’=0 at those values of T.  The reference 79 

PDF 0f  is defined as  0f f T T T   , where T  is the annual-mean 80 

climatology of T and T  is the ensemble average, to represent the 81 

plausible mean shape of the PDF while sharing the mean position with f . 82 

0P  is expressed as 0 0 0 ( )P f C T dT  , so that the left hand side denotes the 83 

excess mean precipitation in a single ensemble member. The reference 84 

mean precipitation is slightly different from P , but the difference is about 85 

5 % and negligible for the results presented in the next section. The first 86 

term on the right hand side of (2) captures the impact of a member’s 87 

difference in SST PDF on P , given the reference sensitivity of P to T. The 88 

0 0 0( ) ( ) ( )P P f C T dT f C T dT f C T dT        
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second term, which captures the impact of a member’s different sensitivity 89 

of P to T, given the reference PDF of T, is called the precipitation sensitivity 90 

feedback. The third term, which represents nonlinear impacts on P , is 91 

small in most of the cases that we have tested. Here we apply (2) to the Niño 92 

3 region (150˚ W-90˚ W, 5˚ S-5˚ N), so that the monthly time series of the 93 

Niño 3-averaged SST and precipitation are used for the analysis. The 94 

composite of P is computed using a Niño 3 SST bin width of 0.2 K. 95 

    A similar method has been used in cloud regime analysis, where cloud 96 

amounts are sorted by mid-tropospheric vertical velocity [Bony et al. 2004; 97 

Bony and Dufresne 2005]. In the present application, one has to be careful 98 

when interpreting the term involving f ’ since it includes not only the change 99 

in ENSO properties, but also biases or changes in mean SST and the 100 

seasonal cycle. The first term in (2) can therefore be decomposed as 101 

             ,     (3) 102 

where f̂  has the shape of 0f  but the mean T  of f (Fig. 1). The first term 103 

on the right hand side represents the effect of the change in the shape of the 104 

temperature PDF, typically associated with an ENSO amplitude difference; 105 

we shall refer to it as the ENSO SSTA amplitude effect. The second term 106 

indicates the effect of the change in mean SST. While the difference in PDF 107 

shape, ˆf f , is affected by the seasonal cycle, we confirmed that the 108 

results did not change much when the seasonal cycle was removed from T in 109 

advance (see discussion). Since the mean SST can be changed by either 110 

   0 0 0 0
ˆ ˆ( ) ( ) ( )f C T dT f f C T dT f f C T dT      
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model biases or external forcing, the magnitude and impact of the mean 111 

SST effect will depend on the ensemble. 112 

    We demonstrate the evaluation of the ENSO SSTA amplitude effect 113 

with two types of model ensembles. One is a four-member ensemble from 114 

the Model for Interdisciplinary Research on Climate version 5 (MIROC5) 115 

[Watanabe et al. 2010]. Each member consists of a 100-year pre-industrial 116 

control run, with slightly different values of an entrainment parameter in 117 

the cumulus convection scheme. The ensemble spans a wide range of ENSO 118 

amplitudes from 0.61 to 1.63 K [Watanabe et al. 2011]. The other ensemble 119 

is the multi-model ensemble (MME) of the CMIP5, which is only partly 120 

available as of this writing [Taylor et al. 2011]. We use pre-industrial control 121 

runs from 16 different models (Table 1). The length of each CMIP5 run 122 

differs, but the statistics in (2)-(3) are calculated using all available data. 123 

 124 

3. Results 125 

    Figure 2 summarizes the results of the PDF method applied to the 126 

MIROC5 ensemble. The ENSO amplitude systematically increases from one 127 

experiment (L575) to the other (L500), the latter showing a positively 128 

skewed SST PDF (Fig. 2a). The shape of C(T) is similar for all the members, 129 

but the tail of intense precipitation extends as ENSO becomes stronger. The 130 

reconstruction of the Niño 3 mean precipitation, ninoP  , is successful by 131 

definition (black and purple bars in Fig. 2b). The decomposition of the total 132 
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reconstruction into four components shows that in terms of the impact on 133 

mean precipitation, the change in ENSO SSTA amplitude can be as 134 

important as the change in mean SST. The change in precipitation 135 

sensitivity, which one might think of as being more directly affected by 136 

changes in convection parameters, here acts to counteract the change in 137 

ninoP  . This result is consistent with the arguments in Watanabe et al. [2011]. 138 

    Before presenting the results for the CMIP5 MME, the ensemble-mean 139 

precipitation and its diversity are shown in Fig. 3. A preliminary analysis of 140 

the mean precipitation fields reveals that the pattern is not significantly 141 

improved over the CMIP3 MME [N. Hirota, pers. comm.], and still suffers 142 

from a double-ITCZ bias [Bellucci et al. 2010]. The spread among the 16 143 

models (shading) indicates that the inter-model differences are especially 144 

large over the dry zones of the continents, subtropical oceans, and 145 

equatorial Pacific.  146 

    Unlike the previous example, the PDFs of T in CMIP5 models are 147 

shifted relative to each other, representing biases in mean SST (Fig. 4a). 148 

The shape of ( )C T  is also different across the models, especially at higher 149 

values of SST (Fig. 4b). Figure 4c shows the reconstruction of ninoP   for the 150 

16 models, ordered following the ENSO amplitude. The diversity in ninoP   151 

exceeds 3 mm day-1 and is well reproduced by the PDF method. In contrast 152 

to the parameter ensemble shown in Fig. 2, the ENSO SSTA amplitude 153 

feedback, highly correlated with the ENSO amplitude (r=0.75), is much 154 
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smaller in the MME. ninoP   is roughly explained by the two effects in (2)-(3), 155 

which are not unique; a different shape of C(T) revealed in Fig. 4b is critical 156 

in some models (e.g., 2, 3, 11, 14, and 16) whereas the mean SST difference 157 

is critical in others (e.g., 1, 4, 8, 12, and 13). Models showing that each term 158 

is very close to the ensemble mean (9 and 15) do not imply that they are 159 

“best,” since the ensemble mean ninoP   itself has a positive error of 0.27 mm 160 

day-1. 161 

 162 

4. Summary and discussion 163 

    We have shown that the PDF equations (2)-(3) work well in 164 

decomposing ninoP   simulated in GCMs. The ENSO SSTA amplitude 165 

feedback works to increase ninoP   due to asymmetry in the precipitation 166 

response to T. However, the relative importance of this term varies. In the 167 

parameter ensemble examined here from a single GCM, changes in ninoP   168 

are largely attributable to changes in both mean SST and SSTA amplitude. 169 

Given that ninoP   can affect ENSO stability, a two-way feedback could 170 

conceivably contribute to low-frequency modulation of both ENSO and the 171 

mean state. In contrast, for the CMIP5 MME where models differ 172 

structurally in many aspects (dynamical core, physical parameterization 173 

scheme, and resolution), inter-model differences in ninoP   are explained 174 

mainly by differences in mean SST, and by different sensitivities of 175 

precipitation to SST.  176 
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    We have also tried defining f to be the PDF of the SSTA in (1). In this case, 177 

the first term in (2) cleanly represents just the ENSO SSTA amplitude influence on the 178 

mean precipitation. The second term then includes impacts of the change in 179 

mean SST on the precipitation response to SSTAs, which in the CMIP5 180 

MME is larger than the impact of ENSO SSTA amplitude differences (Fig. 181 

4). To estimate the SSTA amplitude impact on mean rainfall in an ensemble 182 

with large SST biases, it would be better to define f be the SSTA; however, 183 

the results are similar to those presented above. For example, the 184 

precipitation feedbacks (second term in (2)) in the CMIP5 MME are highly 185 

correlated (r=0.95) with the corresponding term when we use Niño3 SSTA to 186 

define f.  187 

    The PDF method has a potential for other applications. For example, 188 

one can use surface wind stresses instead of precipitation to understand 189 

causes of the diversity in the mean dynamical fields in the CMIP5 MME. 190 

Another application is to use a long, single-member integration [e.g., 191 

Wittenberg 2009]. The ensemble mean can be replaced by the long-term 192 

mean, while the deviation is defined using a particular epoch. The 193 

evaluation of MME can also be done by using observations to define 0f  and 194 

0 ( )C T .  195 

    The PDF method could be extended to decompose T into T , mean 196 

seasonal cycle, and anomalies. While the isolation of the seasonal cycle was 197 

not crucial in the present analysis, for some applications there might be an 198 
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interaction among the mean state, seasonal cycle, and ENSO [Guilyardi 199 

2006]. The asymmetric nature of ENSO can also modify P  through 200 

changing T  [An and Jin 2004]. Thus, our method should ultimately 201 

disentangle the impacts of changing variance and skewness of ENSO on the 202 

mean precipitation and SST. 203 
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Table and Figure Captions 282 

  283 

Table 1: List of the CMIP5 models and the integration length of the 284 

pre-industrial control experiments. 285 

Figure 1: Schematic of the SST PDF and its decomposition. f̂  has the 286 

same shape as 0f , but the mean of the PDF follows that of f. 287 

Figure 2: (a) PDFs of the Niño 3 SST anomalies (thin curves) and associated 288 

composites of the Niño 3 precipitation (thick curves, mm day-1) in the four 289 
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experiments by MIROC5. The shading indicates std dev of the composite. 290 

(b) Reconstruction of the mean Niño 3 precipitation, the reference value 291 

subtracted, following Eq. (2). The reference values obtained from the GCMs 292 

(black bars) are also presented. The std dev of the Niño 3 SST anomaly ( nino  , 293 

K) is shown by yellow circles. The names of the experiments follow 294 

Watanabe et al. [2011]. 295 

Figure 3: Multi-model ensemble mean of P  (contour, mm day-1) and the 296 

inter-model spread scaled by the ensemble mean (shading, %) obtained from 297 

the pre-industrial control runs by 16 CMIP5 models.  298 

Figure 4: As in Fig. 2 but for 16 pre-industrial runs by CMIP5 models. The 299 

model number, sorted by nino  , is listed in Table 1. The decomposition uses 300 

(2) and (3). 301 

 302 

Table 1 303 

Model no. Model name 
Integration 
years 

Model no. Model name 
Integration 
years 

1 GISS-E2-R 850 9 MIROC5 500 

2 INM-CM4 450 10 MPI-ESM-LR 1000 

3 MRI-CGCM3 200 11 HadGEM2-CC 240 

4 CSIRO Mk-3.6 500 12 CNRM-CM5 850 

5 GISS-E2-H 1106 13 CanESM2 996 

6 IPSL-CM5A-LR 800 14 NorESM1-M 500 

7 IPSL-CM5A-MR 300 15 GFDL-CM3 500 

8 GFDL-ESM2G 500 16 GFDL-ESM2M 500 

 304 
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