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ABSTRACT

A newly developed, linear baroclinic model (LBM) and its application to the
tropical ENSO teleconnection is described. The model, based on primitive equa-
tions linearized about the observed, zonally varying basic state in northern winter,
involves linear schemes for the cumulus convection, surface sensible and latent heat
fluxes, referred to as the moist LBM. This enables us to solve a steady state re-
sponse of the coupled dynamical-convective system to given SST anomaly, which
is fairly different from the conventional dry LBM. Linear representation of the con-
vection is acceptable for a realistic range of SST anomalies, reproducing well the
Rossby wave train computed in the conventional LBM forced by a tropical heating.

We used the moist LBM to examine the formation mechanisms of an anomalous
low—level anticyclone near Philippines which links El Nino with the Asian winter
monsoon. Given that the conventional LBM simulates the Philippine Sea anticy-
clone as a Rossby response to the anomalous diabatic cooling associated with the
weakened convection over the maritime continent, causes of the convective sup-
pression is examined. Moist LBM experiments forced by observed El Nino SST
anomalies indicate that a basin-wide warming of the Indian Ocean, in addition to
SST anomalies in the Pacific, has a considerable impact in weakening the convec-
tion over the maritime continent through a modulation of the Walker circulation.
Observational analysis supports this idea and further suggests that the lagged In-
dian Ocean response to El Nino contributes to determine when the Philippine Sea
anticyclone is developed. The moist LBM identified a positive wind—evaporation
feedback at work between the Philippine anticyclone and the western Pacific SST

anomaly, which might also have some role.



1 Introduction

It is widely known that El Nifio-Southern Oscillation (ENSO), the most prominent natural
climate variability on interannual time scales, has a significant impact on the global atmosphere.
One of the ENSO influence is apparent over the North Pacific where a wavy geopotential height
anomaly pattern that resembles the Pacific/North American (PNA) teleconnection dominates
during El Nino and La Nina years (Horel and Wallace 1981). ENSO is found to modulate the
monsoon activity over Asian regions as well (Webster et al. 1998, and references herein).

So far, anomalous atmospheric circulation associated with EI Nino has often been discussed
in terms of forced steady responses to the diabatic heating anomaly induced by the enhanced
convections over the central-eastern Pacific. Hoskins and Karoly (1981) first demonstrated
that the PNA-like height anomaly is interpreted as a Rossby wave train excited by the trop-
ical heating although several papers later pointed out other factors in midlatitudes such as a
feedback from transient disturbances (Held et al. 1989, Hoerling and Ting 1994) and zonal
inhomogeniety in the time mean flow (Branstator 1985) appear to have roles in forming the
PNA pattern as important as the heating in the tropics. On the other hand, Nigam (1994)
showed that the El Nino heating over the tropical regions regulates low—level westerly flow
hence affects the intensity of the Asian monsoon in the subsequent season.

Many of studies cited above have utilized a linear baroclinic model (hereafter referred to
as LBM) to obtain the steady atmospheric response to a prescribed heating. Those studies
present that the LBM is an useful tool to diagnose how the atmosphere dynamically reacts
convective heating which is fixed both in space and in time. However, cumulus convections
generating the anomalous heat source are in reality coupled with the circulation and they can
be interacting with the large-scale dynamics. When convection anomaly excites an anomalous
atmospheric circulation that has much larger scale than the heating, an additional convection
anomaly in response to the circulation response may occur in a remote region and in turn
force the atmosphere. Such a process is especially likely to happen in the tropics, therefore

a question which we raise here is; does the steady atmospheric response under the coupling



with interacting diabatic processes differ from the response pattern determined by uncoupled,
prescribed heating? Furthermore, if it does, how? Motivated by this question, we describe in
this study an attempt to obtain forced steady responses of the coupled dynamical-convective
system using the LBM.

Free modes in the dynamical-convective system have been extensively investigated in a
framework of the conditional instability of the second kind (CISK). In particular, many efforts
have been made to extract unstable modes which arise from a feedback between convective
heating and the low—level convergence associated with tropical waves, called wave-CISK (e.g.
Yamasaki 1969; Hayashi 1970; Lindzen 1974; Stevens and Lindzen 1978). While these modes
are relatively sensitive to the choice of cumulus parameterization and even stabilized with some
schemes (Stark 1976; Crum and Stevens 1983; Brown and Bretherton 1995), they are proposed
as a possible mechanism for the tropical intraseasonal oscillations (Lau and Peng 1987; Chang
and Lim 1988; Sui and Lau 1989). As mentioned, however, these studies mainly focused on
to obtain modal solutions with relatively simplified (e.g. two dimensional model, equatorial
plane, and idealized basic states) conditions. On the other hand, the present study examines
forced solutions in more realistic, three dimensional states. In the first half of this paper, we
detail the numerical model and compare results of the LBM including moist diabatic processes,
referred to as the moist LBM, with those of the conventional LBM. Then an application of the
moist LBM computations is presented in the latter half, which is aimed to further understand
the teleconnection associated with ENSO as explained below.

During the mature phase of El Nino, sea level pressure shows large positive anomalies
over the western subtropical Pacific, which are lasting into the spring (Harrison and Larkin
1996). Wang et al. (2000, hereafter denoted as WWF) also exhibited that an anomalous
anticyclonic circulation near Philippines that is associated with the positive sea level pressure
anomalies and is confined to the lower troposphere rapidly develops during autumn prior to
the El Nino mature. This anticyclonic anomaly counteracts the northerly wind of the Asian

winter monsoon and supplies more water vapor from the south, hence contributes to wet and



mild conditions over East Asia. WWF further carried out atmospheric general circulation model
(AGCM) experiments which suggest that the Philippine Sea anticyclone is forced by suppressed
convective heating over the maritime continent while maintained through the positive wind—
evaporation feedback with in-situ sea surface cooling. The moist LBM which we have developed
is applied to verify the WWZF’s hypothesis by solving coupled dynamical-convective responses to
sea surface temperature (SST) anomalies associated with El Nifno. We found that some results
are fairly consistent with WWF, for example, the Philippine Sea anticyclone was excited by
the suppressed convection over the maritime continent. However, it was also shown that the
weakening of convections results from a modest warming in the Indian Ocean SST, in addition
to the strong El Ninno SST anomaly in the central-eastern Pacific. A delayed warming of
the Indian Ocean SST appears to be responsible for the rapid development of the anomalous
anticyclone near Philippines.

This paper is organized as follows. In section 2, LBM and moist processes involved are de-
scribed. A forced response in the moist LBM is compared with the conventional LBM response
and observations in section 3, in order to validate the model formulation. Section 4 gives
a physical insight into the mechanism of suppressed convections and associated anticyclonic
circulation over the western tropical Pacific based on results of the moist LBM experiments,
followed by some observational data analyses presented in section 5. The finding obtained in
this study is summarized and further discussed in section 6, with several remarks noticed in

the last section.

2 Model description

a. Linear baroclinic model
The LBM used in this study is based on primitive equations exactly linearized about a
basic state (see Watanabe and Kimoto 2000, 2001 for mathematical expressions). The model

variables which consist of vorticity ({), divergence (D), temperature (7') and logarithm of



surface pressure (7) are horizontally represented by spherical harmonics having the resolution
of T21 while vertically discretized using a finite difference on to 20 o levels, in which five layers
reside below o = 0.8. In most computations presented in this article the basic state is adopted
from the zonally varying, winter (December—February) climatology of the NCEP reanalysis.
The model also includes three dissipation terms: a biharmonic horizontal diffusion with the
damping time scale of 1dy for the smallest wave, very weak vertical diffusion (damping time
scale of 1000dy) to remove a vertical noise arising from finite difference, and the Newtonian
damping and Rayleigh friction as represented by a linear drag which has a time scale of 1dy

applied only to the lower boundary layers (o > 0.9) and the uppermost two levels (o < 0.03).

b. Basic concept of the moist LBM
An extension of the linear model which includes an interacting convection is briefly explained
here, followed by description of schemes for the diabatic processes in section 2c.

A steady linear response is symbolically written as

LX=F , (1)

where X is a vector containing perturbations ()’ for prognostic variables, i.e., X = X(¢', D', T, n'),

while F and L denote a prescribed forcing and linear dynamical operator, respectively. When we
consider the forcing solely due to anomalous cumulus convection, Eq. (1) can be solved with
a given diabatic heating as F, referred to as the dry LBM. When the anomalous convective
heating is internally generated in response to SST anomaly, F will be a function of both X
and an SST anomaly 7! in addition to a basic state X. Then it can be decomposed into two
components, F;(X)X and F.(X,T!) (i’ and ’e’ stand for internal and external, respectively), so

that Eq. (1) is rewritten as
(L—F)X=F, . (2)

Note that X in Eq. (2) now includes perturbation in the specific humidity ¢’. The heat

source and moisture sink induced by anomalous convection are represented by F;X. In the



linear model expressed by Eq. (2), which is the moist LBM, a forcing F, is composed by
terms in linearized surface bulk fluxes that depend on 7 and the basic state but not on the
perturbation X, as further delineated later. Actual implementation for F; and F, is described
in the next section.

Since the rank of L and L —F; exceeds 30000 with the resolution employed, it is hard to solve
Egs. (1) and (2) with the matrix inversion technique. Instead, we integrate the models in time
to obtain the state state response. While the time integration fails to capture steady response
when unstable modes such as baroclinic waves dominate, the boundary layer damping of (1dy) !
is enough in neutralizing those modes (cf. Hall and Sardeshmukh 1998), that ensures the steady
state response can be obtained in this method. In fact, we have confirmed that steady responses
by the time integration are qualitatively similar to those obtained by the matrix inversion with
much lower resolution of T21 and vertical 11 levels. Both for the dry and moist linear models,
the time integration is continued up to 30 days, while the responses at day 15 are only shown
in the subsequent section because the tropical response approaches steady state approximately

after day 10 or 15.

c. Cumulus convection and surface fluxes
For the state vector of the moist LBM, X = X({', D', T',7',q"), forcing F contains the

following components.

F=F(0,0,Q. + @, 0,0, + Qc)

where @, and —@Q);, denote the convective heat source and moisture sink while @}, and @, are
the surface sensible and latent fluxes, respectively.

The cumulus convection is represented as

€c

Q.= (T, ~T' - AT)) 3)
Qy =gt —d) - (4)
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They are based on a relaxed convective adjustment proposed by Betts (1986) and Betts
and Miller (1986), further following a linearization by Neelin and Yu (1994). When cumulus
convection occurs, temperature and specific humidity perturbations are restored to reference
profiles 7! and ¢. with an adjustment time 7.. The time scale of the adjustment basically
follows the life time of convective clouds, here set at 2hr as in Betts (1986). AT, denotes a
correction term which ensures the constraint between heat release and moisture consumption
while e, indicates the so—called convective efficiency introduced in this study.

The convective adjustment is applied between the top of PBL, o,, and the cloud top o;.
The value of o, is fixed in space at 0.98 while o, is defined by the level where cloud parcel
raising from the boundary layer loses buoyancy.

Reference profiles 7, and ¢/, may be expressed in terms of the moist static energy at PBL,

hy, = ¢,T} + Lqy (T} and g, are values in the PBL), as
e, T, = Ahy, (5)
Li. = Bl . ©

Reference vertical profiles for 7). and ¢, denoted as A and B, are fixed in time and obtained
in a slightly different manner from Neelin and Yu (1994). In the original scheme the reference
profiles are determined by an iterative computation starting from the observed structure as
initial T, and ¢. (Betts 1986). The final profile does not necessarily follow the moist adiabat,
but close to it, as justified by Manabe and Strickler (1964). Therefore we simply assume the

cloud parcel raising with preserving the moist adiabatic character from the PBL, namely,
oI+ ¢+ La, (T, T;) = Ty + ¢, + Lq}, (7)
where ¢/ is a perturbation of saturated specific humidity defined as

Lq, = ~v¢, T, (8)

_qus B
v_cpdT =T



By applying the hydrostatic equation for ¢ and ¢, Eq. (7) is analytically solved for A (cf.
Yu and Neelin 1994),

1 b 1
A:(L+we@pnl Tl (10)

The moist adiabat assumption also leads to a saturated condition

4o+ = 0 (1) + AT (11)

which then gives the profile for B simply as
B=~A . (12)

Examples of A and B are displayed in Fig. 1, which shows the vertical section along
180°E computed with the winter basic state. As expected from an observational estimate
of the heat source and moisture sink, A and B have the maximum in the upper and lower
troposphere, respectively. It should be noted, however, that vertical structure of @, and @,
internally calculated in the model may not necessarily resemble A and B since the heat source
and moisture sink depend on the environmental values of temperature and humidity as well.

While @, and @, are independently determined both by means of A, they must satisfy an

energy constraint of the heating balanced by the moisture sink at each column:
ap oy
%L.QMU+LU Qldo =0 . (13)

In principle, the energy constraint can be achieved by modifying 7 and ¢, such as to satisfy
Eq. (7) with AT} = 0 through an iterative adjustment (Betts and Miller 1986). Here, however,
we avoid such an iteration and instead give the correction term AT! led by substituting Eqs.

(2)-(6) into Eq. (7),
AT =c¢,'[(<A>+<B>h—c¢,<T >-L<q>], (14)

where < > means a vertical average between the cloud base and top.
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In nature, the deep cumulus convection only occurs where the environment provides suf-
ficient buoyancy to the cloud parcel, which is measured either by CAPE or the cloud work
function. In the original Betts (1986) scheme, such a constraint has not been explicitly in-
cluded although o, reflects the basic state CAPE. Therefore, the convective efficiency e. which
represents the constraint from the basic state CAPE is multiplied to Eqs. (3)—(4) according to
the definition

M
e, = min (ﬁ’ 1— e) , (15)

C

where M indicates a basic state CAPE while M, is a critical value of CAPE set at 3000 J
Kg~!. A limitation parameter ¢, to which a tiny value of 0.1 is given, is to mimic that not all
the available moist energy is converted to the cumulus heating. The basic state CAPE and e,
are shown in Fig. 2. The CAPE has a broad maximum in the entire tropics except for the
Pacific and Atlantic cold tongues (Fig. 2a). The maximum resides in the Southern Hemisphere
because we chose the northern winter as the basic state. The convective efficiency follows
the distribution of CAPE, confining cumulus convections to the tropics except for the western
North Pacific and Atlantic where baroclinically unstable flow can result in a weak convective
rainfall (Fig. 2b). It should be noted that e. plays a minor role in determining a forced
dynamical-convective response therefore results are similar to even with e, = 1 everywhere
(not shown).

The source of convective anomalies is the sensible and latent heat supplied at surface. They

are provided by the respective linearized form of the Bulk formula:

Q= 5 POV = 1)+ W(T - T)] (16)
Q. = T W L (TOT — o} + W (T) — )
gy PO (T) ~ 2)] (17)



where the bulk coefficients C}, and C, are calculated with basic state quantities, following Louis
(1979). We assume the PBL thin enough, so that @}, and @, are uniformly given in the PBL.
The wind speed is indicated by W and W’ in Eqs. (16)-(17), with the perturbation expressed

as

1

W' = W(ﬂu' + ') (18)
where we set the minimum of | W | at 2.5 m s™' to avoid singularity near the border between
the surface easterly and westerly in the basic state. S, represents an evaporation efficiency,
which is always 1 over oceans while takes various values over lands depending upon the soil
moisture W,. In this study, 3, is fixed at 0 over lands for simplicity. In addition, perturbation
in the evaporation efficiency 3, which is a function of W, and has nonzero value only over land
is also set at 0 since the model yet includes a prognostic equation for Wg’. As a results, the
current scheme lacks an atmosphere-land coupling in terms of latent heat exchange, which is
further discussed in section 6. Nevertheless, this caveat is not likely to affect results presented
in the present paper since most of convective heating focused on concentrates over oceans.

In summarize, the convection and surface flux schemes are driven by 77} given to Eqs. (16)-
(17). The symbolic form of the external forcing F, therefore consists of first terms in these
equations while all the other terms in Eqs. (3)—(4) and (16)—(17) is internally computed in
conjunction with the dynamical response, namely, indicated ad F; in Eq. (2). Note that terms
involving W’ in Eqgs. (16)—(17) represents the heat flux components induced by the anomalous
wind, referred to as the wind—evaporation feedback although it contains the sensible heating as
well. If the surface wind anomaly forced by a positive SST anomaly counteracts the mean wind,
resultant ), produced by the negative W' helps maintain the SST anomaly. Such a feedback
is known to play an important role in the mean climate (e.g. Xie and Philander 1994) and we
also examine the effect of the wind—evaporation feedback in a forced steady response in section

4c.
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3 Model validation

In order to verify that the moist LBM works properly, we first focus on the in—situ diabatic
heating and extratropical circulation anomalies associated with ENSO.

In Fig. 3, observed composite anomalies (differences between El Ninos and La Ninas)
in boreal winter are shown for three quantities: SST, outgoing longwave radiation (OLR)
and geopotential height at 500 hPa. Here SST is derived from the UK Meteorological Office
(Parker et al. 1995) while OLR is obtained from NOAA satellites available from June 1974 to
November 1998 (Liebmann and Smith 1996). Products of the NCEP/NCAR reanalysis (Kalnay
et al. 1996) are used for 500 hPa height and other atmospheric fields which will be shown later.
Composites were made in reference to the Nino 3 SST index for 1949-1999 and winter anomalies
during the same period except for OLR which has the data only available after 1979.

These anomalies associated with ENSO are briefly documented although many aspects of
them would be already familiar. The strongest SST warming of maximum about 4 K is found
in the central-eastern equatorial Pacific, accompanying weak negative anomalies in the western
Pacific and midlatitude in both hemispheres (Fig. 3a). A modest warming also occurs in most
parts of the Indian Ocean, which is known to have a delay in its development relative to the
El Nifio cycle (e.g. Tourre and White 1995; Lanzante 1996). In association with the SST
signal in region I marked in Fig. 3a, there are extremely enhanced convections as inferred from
negative OLR anomalies (Fig. 3b). They are surrounded by a horse—shoe pattern of positive
OLR anomalies to their west, north and south. In the equatorial strip outside of the Pacific,
convections are all suppressed except for the western Indian Ocean. The height composite
is predominated by quadrapole anomalies over the North Pacific, some of which resemble the
PNA teleconnection. Simultaneously, the entire tropics is covered by weak, but quite significant
positive height anomalies reflecting the tropical-wide warming.

As detailed in section 2, the moist LBM forced by a prescribed SST anomaly calculates
diabatic heating anomaly such as to balance with a steady circulation response. Figure 4

presents the depth-averaged heating response (denoted as < @ > following Eq. (14)) in
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the experiment M1, in which SST anomalies in region I are given, for individual grid over
the equatorial Pacific of 170°E-90°W and 10°S-10°N together with the corresponding observed
OLR anomalies. Note that the < ). > and OLR are plotted against the common SST anomaly
at each grid point. The scatter diagram for observed OLR (Fig. 4a) reveals that El Nino
and La Nina are not symmetric in terms of the anomalous heating and cooling generated
by them, namely, the former stronger than the latter. This asymmetry is likely to result
from nonlinearity in the Clausius-Clapeyron equation which leads to larger sensitivity of ¢, to
positive SST anomaly. The heating anomaly diagnosed in the moist model is, however, nearly
linear with respect to the phase of SST anomaly (Fig. 4b), which is trivial from the linear form
of moist schemes. This indicates that the moist LBM may underestimate steady response to
large positive SST anomaly such as 1997/98 El Nino. However, this model caveat is less clear
for statistical ensemble anomalies as represented by El Nino-La Nina composites (orange dots
in Fig. 4), suggesting that the linear representation of diabatic processes are acceptable for
SST anomalies not extremely positive.

Another verification of the moist LBM is to compare the spatial structure of the heating
and circulation responses with the observed heating and circulation response to it computed
by the dry LBM (Fig. 5). For comparison with M1, the dry LBM was forced by the heating
corresponding to the negative OLR anomaly over the equatorial Pacific (cf. Fig. 3b) with the
vertical profile defined by an empirical function proposed by Reed and Recker (1971). The
anomalous heating, < @’ >, calculated in this way shows the maximum of about 3 K day !
(Fig. 5a), which excites a Rossby wave train emanating toward North America as seen in the
500 hPa height response (Fig. 5b). In the moist LBM, < Q. > over the equatorial Pacific is
much stronger and zonally elongated compared to the empirically derived < @, > (Fig. 5c).
Besides, anomalous cooling occurs over the regions away from SST anomalies, which must have
been induced by the anomalous circulation. It is comprehensible that the cooling anomalies
are caused by enhanced subsidence of the Hadley and Walker circulations driven by the strong

upward motion over the equatorial Pacific. The diabatic cooling anomaly over the subtropical
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Pacific and Amazon resembles the observed OLR anomalies whereas the observed convection
anomalies are not well captured over the Indian Ocean and western Pacific, which will be
discussed in the next section. It is also interesting to note that the PNA-like height response
is nevertheless similar to that in the dry LBM, suggesting it being insensitive to the additional
cooling appeared in the most LBM although the moist model is capable of better reproducing
the wave train over the South Pacific and the low pressure anomaly over the North Pacific (Fig.
5d). Overall feature of the height response in the moist LBM is at least comparable to the dry
LBM, indicating the relevance of the model formulation. Note that, however, the extratropical
height responses in both models are weaker than observed composite (Fig. 3c) and reveal more
wave—like structure. These deficiencies mostly arise from the absence of the transient eddy
feedback (e.g. Held et al. 1989). In fact, the anomalous eddy momentum forcing associated
with Fig. 3, computed using daily NCEP reanalysis data, is found to amplify and modify the

height response toward observed anomalies over the North Pacific (not shown).

4 Model application: Why western Pacific convections
are suppressed during ENSO?

In this section we further present steady responses diagnosed in the moist LBM which
focused on the anomalous Philippine Sea anticyclone and convective activity over the western

Pacific as described in the introduction.

a. Dry LBM experiments

We first reexamine the WWEF’s argument that the Philippine Sea anticyclone is excited by
the anomalous cooling associated with suppressed convections over the maritime continent but
not by the heating over the central Pacific. The question if it is true can be qualified by means
of the dry LBM with and without the cooling anomaly as prescribed forcing. Figure 6a shows
the observed composite for the 850 hPa stream function (denoted as 1g59) anomalies associated

with ENSO superimposed on the OLR anomalies which have been shown in Fig. 3b. The
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Philippine Sea anticyclone is found to dominate in the northwest of suppressed convections
which also accompany a weak anticyclonic circulation anomaly over the Southern Hemisphere.
The spatial phase of these anomalous anticyclones to the weakened convections does match the
classical Gill-pattern (Gill 1980) except for the sign reversed. Indeed, the dry LBM forced only
by the El Nino heating in the central Pacific lacks the anticyclonic responses over the western
Pacific (Fig. 6b) whereas they are realistically reproduced when the anomalous cooling was
incorporated (Fig. 6¢). Note that the heating and cooling that force the dry LBM referred
to the observed OLR anomaly pattern and adopted an empirical vertical function as in Fig.
4a. The g5y response in the dry LBM as well as the observed composite, shown in Figs. 6a
and 6¢ respectively, indicates that the Philippine Sea anticyclone is much stronger than the
Southern counterpart, conceivably due to the anomalous cooling located slightly to the north
of the equator.

These results are fairly consistent with WWEF and clearly show that the anomalous circu-
lation over the western Pacific during ENSO is mainly controlled by the convective activity in
the same region but not by the convection anomaly over the central-eastern Pacific which is a
direct response to El Nino/La Nina. On the other hand, one may ask whether the suppressed
convection over the maritime continent is also an aspect of ENSO. Since the origin of this con-
vective suppression is one of key questions addressed in this study, it is detailed in the following

sections.

b. Moist LBM experiments

It is no doubt that the anomalous heating and cooling over the central-eastern Pacific
associated with El Nino and La Nina modulate the Walker, as well as Hadley, circulation.
Some people discuss that the enhance convection during El Nino brings an eastward shift in
the mean Walker circulation entirely and thus weakens convections over the maritime continent
where the climatological convective activity is quite strong. However, such an argument has
not been proven and even seems crude since there is no justification for why the convection

must be preferentially suppressed over the maritime continent no matter how strong the mean
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convection is.

An alternative explanation may be led from the low—level momentum balance. If we assume
that the mean easterly is not strong enough at lower levels, low-level cyclonic response to the El
Nino heating accompanies an equatorward flow to the west, which is balanced by an anomalous
surface divergence following the Sverdrup relationship fv = —fD. This divergence would
result in the subsidence strengthened over the off-equatorial western Pacific, therefore may
be responsible to suppress convections. In order to test this hypothesis, we look at the g5
and 500 hPa pressure vertical velocity (wseo) responses in M1 and M1Z, which employs the
SST forcing same as M1 but uses the zonally uniform basic state (see Table 1). In M1Z,
the low—level cyclonic response extends to the west of the dateline, which in fact accompanies
anomalous subsidence in its equatorside. While such a descent suppresses the convection as
seen in the negative < ()). > response (not shown), it is still far from the maritime continent
and furthermore confined to the off-equator. The steady response under the zonally varying
basic state of M1 even reveals the cyclonic anomaly and associated descent moved to the east,
which is apart enough to affect the western Pacific convections.

It was thus suggested that the SST anomaly in region I (cf. Fig. 3a) alone cannot explain
the convective suppression over the maritime continent. Another possibility which should
be examined is that additional SST anomaly in other regions is necessary to suppress the
convections. If this is the case, which region is important? To answer this question, we compared
50 and < Q' > responses in the most LBM experiments between M1, M2 and M3 (see Table
1 for the description). In M2, the SST cooling in the western Pacific (region II) is incorporated
into the region I SST anomaly in computing the external forcing while a basin—wide warming
in the Indian Ocean (region III) is further included in M3.

The 150 and < (), > responses in M1 are exactly the same as Figs. 7b and 5c¢, showing nei-
ther the anticyclonic anomalies nor the anomalous convective cooling over the western Pacific
(Fig. 8a). When negative SST anomalies are added in the western Pacific (M2, Fig. 8b) nega-

tive < @), > response in the northern off-equator extends toward west and a weak anticyclonic
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Wg50 response appears further to the west although the amplitude is much weaker than the
observations. On the other hand, M3 depicts that the additional SST warming in the Indian
Ocean drastically changes < Q. > hence 1559 response pattern not only aloft but also over the
remote western Pacific (Fig. 8c). An anomalous convective cooling over the central equatorial
Indian Ocean which has been found in M1 and M2 disappeared in M3, even reversed to a weak
heating. Convections over the western Pacific are considerably suppressed as confirmed by
anomalous cooling intensified and extended between 120°E and 160°E. They also accompany
a narrow band of additional heating straddling northern Australia and Indonesia, which is not
found in the observed OLR anomalies (Fig. 6a). As expected from Fig. 6¢, anomalous cooling
strengthened in M3 has induced the Philippine Sea anticyclone and the southern counterpart
with realistic amplitude.

Since M3 is forced by SST anomalies both in the Indian Ocean and western Pacific, a relative
importance of these SST anomalies in weakening the convection over the maritime continent is
evaluated by taking differences between experiments M1-M3. Shown in Fig. 9a is the difference
in < @), > and the 850 hPa wind responses between M1 and M2, which quantifies the impact
of SST anomalies in region 1T while Fig. 9b is the difference between M2 and M3 corresponding
to the effect of SST anomalies in region III. Because the model is linear, sum of those difference
maps becomes equivalent to the response to SST anomalies in regions II and III. It is shown
that the negative < @), > response to the cooling SST in the western Pacific has a minimum
around 160°E, which is away eastward by 30 degrees from the center of observed negative OLR
anomalies, and so does the anticyclonic response (Fig. 9a). This is again consistent with an
AGCM experiment by WWF, showing the anticyclonic response to the western Pacific cooling
of SST shifted eastward than expected (cf. their Fig. 13a). The < @', > response to the Indian
Ocean warming reveals negative minima in the off-equatorial western Pacific around 130°E,
which is closer to observations (Fig. 9b). While < @, > in Fig. 9b has some deficiencies such
as unrealistic heating anomaly around 110°E and the western Pacific cooling anomaly split into

two off-equatorial minima unlike the observed OLR composite, the comparison with Fig. 9a
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indicates that the Indian Ocean SST anomalies affect the convection and circulation anomalies
over the western Pacific as much as or stronger than the local SST cooling.

As mentioned in the introduction, the Philippine Sea anticyclone is associated with the
northward advection of warm air that contributes to the warmer winter over East Asia during
El Nino. Such a situation is clearly identified in the ENSO composite for observed temperature
and wind anomalies at 850 hPa (Fig. 10a). Along the northwestern edge of the anticyclonic
anomalies there is a strong southwesterly which is in phase with the warmest temperature
anomaly. The moist LBM captures some of these low-level anomalies when forced by SST
anomalies in the whole tropical Pacific and Indian Ocean basins, i.e., M3 (Fig. 10b). The
position of southwesterly coincides with the maximum temperature response as in observations
while they are slightly shifted southward. Note that the warm temperature anomaly in Fig. 10a
covers most of East Asia of eastern China, Korea and Japan while that diagnosed in the model
is confined to the south of 30°N and even cooling response dominates to the north, suggesting
that the effect of tropical SST forcing can reach the subtropics but not midlatitude over East
Asia.

A significant impact of the Indian Ocean warming in suppressing the western Pacific con-
vections can be interpreted in terms of changes in the Walker circulation. To understand it,
we showed in Fig. 11 the equatorial (10°S—-10°N) vertical wind (w) responses in M1 and M3
together with the corresponding SST anomaly. In M1, the w response depicts large negative
values in the eastern Pacific where the positive SST anomaly is given (Fig. 11a). This strong
ascending motion is compensated by weak descent in all the rest longitudes. The subsidence is
especially strong to the east of ascent. This is reasonable since the anomalous vertical motion
associated with a Gill-like response will dominate to the east (west) of heating in the equatorial
band (off-equator) in association with the center of a forced Kelvin (Rossby) wave. In M3, in
addition to the ascending motion in the eastern Pacific, which remains the same, another as-
cending branch comes to happen in the Indian Ocean (Fig. 11b). Since the ascending response

is largely compensated by a subsidence to the east as in M1, the descent in the western Pacific
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is preferably enhanced, which appears to be responsible for the convective suppression found

in Fig. 8c.

c. Wind—evaporation feedback

A comparison between M1-M3 indicates the importance of Indian Ocean SST anomalies for
the development of the Philippine Sea anticyclone. At the same time it is shown that the local
sea surface cooling contributes as well (cf. Fig. 9a). Since the negative SST anomaly is located
under the eastern half of the anticyclone, anomalous northeasterly would accelerate trade wind
then further cool the ocean surface. This forms a positive wind—evaporation—SST feedback first
postulated by WWF, which may explain the persistence of the Philippine Sea anticyclone if it
really works. The moist LBM explicitly involves such a feedback as explained in section 2c, so
that it will be worth examining whether the positive feedback is at work. For this purpose,
another diagnosis was made with the SST forcing as in M3 but without the wind-evaporation
feedback terms (M4, see table 1).

Shown in Fig. 12ais the difference in surface wind and the surface diabatic heating responses
between M3 and M4, in which the heating is converted to the thermal forcing for SST. The
most conspicuous difference in the wind response is found over the northern tropics where an
anomalous northeasterly blows though the magnitude is less than half of the actual response
in M3. It certainly happens that the northeasterly anomaly strengthens the wind speed in
conjunction with the background trade wind, then produces a net cooling for local SST's through
enhanced evaporation. The difference field also shows a positive thermal forcing at the surface
along the Southeast Asian coast, which would contribute to bring the SST warming there.
The overall pattern in the heating difference shown in Fig. 12a is an east-west dipole in the
northern tropical western Pacific, which has some similarity to the SST anomaly pattern that
forced steady responses (Fig. 12b). This resemblance reinforces the positive wind—evaporation—
SST feedback being a relevant process working in the western Pacific, as proposed by WWE.
Simultaneously, however, the g5 and < Q). > responses in M4 reveal the anomalous cooling

over the western Pacific and the Philippine Sea anticyclone, both of which are quite similar to
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those in M3 (not shown). This implies that the wind—evaporation feedback is not crucial for

the development of those anomalies but seems to help them lasting longer time.

5 Observational analysis

In the previous section, results of the LBM diagnosis have been presented and compared
to observed composites for ENSO. The major finding obtained was that the modest warming
of the Indian Ocean may have a considerable impact in setting up the anomalous convection
and circulation over the western Pacific. Here we came back to further look at observational
data to seek an evidence that supports the above hypothesis.

For that purpose, a lagged composite is made for monthly g50, wsop and SST anomalies.
The composite is again based on the Nino 3 SST and the lag is taken for each 1lyr before
and after the mature January of El Nino/La Nina. Figure 13a depicts a time series of the
lagged composite anomaly for 1g59 averaged over 100°-140°E and 0°-20°N which covers the
Philippine Sea anticyclone (see the map shown in the top right). As noted by Harrison and
Larkin (1996) and WWF, the Philippine Sea anticyclone rapidly develops around October
then persists beyond the next spring with decaying gradually (Fig. 13a). It is interesting to
compare this evolution with the wsy anomaly obtained in a similar manner but averaged over
the western Indian Ocean (Fig. 13b). The wso anomaly keeps positive value until October
before the El Nifio mature season then changes the sign to negative, lasting into next February.
The transition from positive to negative anomaly, corresponding to the reversal from descent
to ascent, appears as rapid as that in 1g59. This coherent development of the anticyclonic and
ascending anomalies suggests the relevance of our hypothesis referred to at the beginning of
this section. On the other hand, the positive 1g50 anomaly exists even after the negative wsg
anomaly was decayed. This is also reasonable when we interpret such a persistence as a result
from the positive atmosphere—ocean feedback in the western Pacific as described by WWF and

in section 4c.
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Considering the w response in M1 and M3 (cf. Fig. 11) and the observed time evolution
shown in Fig. 13, we speculate that the Indian Ocean warming occurred around October. To
verify it, the lagged composites for wsgy and SST anomalies averaged in the equatorial strip
(10°S—10°N) are plotted in Fig. 14. Over the central Pacific, an anomalous ascending motion
starts developing around April of Yr(0) (i.e. the year before mature El Nifio) concurrent with
the SST warming associated with El Nino. In the Indian Ocean, however, SST anomaly during
this period is quite weak, then gradually develops around October. As indicated in Fig. 13b,
wsoo anomaly rapidly changes the sign over the western Indian Ocean in October (Fig. 14a),
which corresponds to the time when the underlying SST anomaly reaches 0.5 K. The El Ninio
SST anomaly still grows after October of Yr(0) while the Indian Ocean SST anomaly retains
nearly the same magnitude (Fig. 14b). The lagged warming of the Indian Ocean as seen in
Fig. 14b has already been reported by many researchers and the mechanism is discussed as
well (Klein et al. 1999; Lau and Nath 2000), which is beyond the scope of this study. It should
be noted that the evolution of the Indian Ocean SST anomaly is smoother than that of wsgg
anomaly which shows much rapid transition, suggesting that nonlinearity between convection
and SST has a role, namely, convections over the Indian Ocean may suddenly become active
when SST exceeds a certain threshold as postulated by Gadjil et al. (1984) and Graham and
Barnett (1987). Such a possibility should be kept in mind although we cannot discuss it further
at this moment.

The lagged composites shown in Fig. 14 supports our thought that the delayed warming
of the Indian Ocean seems to explain the development of the anomalous ascending motion
aloft hence the Philippine Sea anticyclone both taking place in October. This also implies
that M1 (or M2) and M3 presented in section 4 roughly correspond to the situation before
and after October of Yr(0). Figure 14 gives another suggestion that further supports our idea.
The western Pacific SST starts cooling around April of yr(0), roughly the same time as the
eastern Pacific warming although the former reaches the peak earlier than the latter. This is

not surprise because the cooling signal is probably a part of El Nino itself (Wang et al. 1999).
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On the other hand, the corresponding wspp anomaly is yet weak in that period even though it
does exits, then rapidly intensified around October which is again in phase with the reversal in

the Indian Ocean wsgq anomaly.

6 Summary and discussion

We have developed a novel type of the linear baroclinic model which coupled the dynamics
with active cumulus convection and surface heat fluxes, called the moist LBM in this study. The
model solves forced steady response of the coupled dynamical-convective system to a prescribed
SST anomaly, leading to the response which often accompanies diabatic heating anomalies not
only over the SST anomaly but also over remote regions.

Before we discuss model caveats and a possible direction toward which the model is further
developed, results of its application to the ENSO teleconnection over the western Pacific are
summarized. Particular attention was paid to understand the formation mechanism of the
Philippine Sea anticyclone that links EI Nino with the Asian winter monsoon. Consistent with
WWF, we confirmed using the conventional dry LBM the anticyclonic anomaly interpreted
as a Rossby response to the anomalous diabatic cooling due to suppressed convections over
the maritime continent. Then, to clarify why the convections are suppressed over the region
we diagnosed the dynamical-convective response in the moist LBM forced by ENSO-related
observed SST anomalies in various regions (cf. section 4). We found that Indian Ocean SST
anomalies, as well as the SST anomalies in the equatorial Pacific, are relevant in weakening the
western Pacific convective activity, as schematically illustrated in Fig. 15.

In the upper panel of Fig. 15, the anomalous Walker circulation revealed in the model
response is presented in association with the warming in the eastern equatorial Pacific. As in
observations, convections are greatly enhanced over the central tropical Pacific and the resul-
tant heating anomaly excites a pair of low-level cyclonic responses over the subtropics, which

accompanies Rossby wave trains toward higher latitude. The anomalous heating is balanced by
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a strong upward motion, compensated by a weak subsidence in all the other equatorial regions.
Since the circulation response over the midlatitude Pacific and the anomalous descent over the
tropics outside of the Pacific are a bi-product of the convective heating anomaly in the central
equatorial Pacific, the former is not sensitive to an anomalous diabatic cooling associated with
the latter, as described in section 3. The anomalous subsidence also occurs in the western
Pacific, however, it does not preferentially suppress convections over the region.

When a modest warming of the Indian Ocean is incorporated into the SST forcing, the
response of the Walker circulation as well as the anomalous convection is modified as shown in
the bottom panel of Fig. 15. The convective activity is now enhanced over the Indian Ocean
though not stronger than that in the central Pacific. It yields another ascending branch in the
anomalous Walker cells, in turn reinforcing the subsidence between the two ascents, namely, over
the western Pacific. The intensified descent is accompanied by the diabatic cooling anomaly,
which then induces the Philippine Sea anticyclone.

Since the Indian Ocean SST starts raising several months behind the development of El
Nino, two response patterns illustrated in Fig. 15 can also be interpreted as those in a different
phase of the ENSO evolution. Observed composites presented in section 5 show that the
rapid development of the Philippine anticyclone is concurrent with a reversal of the vertical
motion over the western Indian Ocean both found in October. Thus the anomalous circulation
patterns are close to the upper (lower) panel of Fig. 15 before (after) October prior to the El
Nino mature. On the other hand, the Indian Ocean warming is perhaps a delayed response to
El Nino through changes in the surface net heat flux, in particular the latent heat and shortwave
radiation (Klein et al. 1999; Lau and Nath 2000). The shortwave anomaly, i.e. increased solar
insolation, is argued to result from a reduction in the cloud cover. This is also coincident with
our moist LBM diagnoses M1 and M2 indicating suppressed convection over the tropical Indian
Ocean (Figs. 8a and 8b) that ought to result in less convective clouds when the Indian Ocean
is yet warming. Considering these arguments, processes presented in Fig. 15 may be regarded

as a lagged, remote feedback of the coupled atmosphere—ocean system in the Pacific and Indian
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Ocean basins.

Another process which is not emphasized in Fig. 15 is an effect of the weak SST cooling
in the western Pacific on the Philippine Sea anticyclone. The sea surface cooling was also
capable of suppressing in—situ convections hence forcing the anticyclonic circulation anomalies
(cf. Figs. 8b and 9a) which appear to in turn enhance the initial SST anomaly via the positive
wind—evaporation feedback. These processes have been depicted by WWF and therefore our
results are to reinforce WWF’s argument. However, in the present diagnoses the impact of local
SST cooling on the western Pacific convection was not as strong as the Indian Ocean warming
(Fig. 9) and the positive air-sea feedback seemed not crucial at least for the development of
the anomalous convection and circulation over the western Pacific.

Our hypothesis can be verified by hindcast AGCM experiments forced with observed SST
anomalies in the Pacific but with and without Indian Ocean SST anomalies. While a number of
works have been made to carry out an AMIP—type hindcast run (Kitoh 1992; Ju and Slingo 1995;
Sperber and Palmer 1996; Goswami 1998; Meehl and Arblaster 1998), few of them performed
an additional AGCM run without Indian Ocean SST anomalies to compare the response fields.
Recently, however, Farrara et al. (2000), who examined circulation anomalies during 1997/98
El Nino by means of an AGCM ensemble, showed that the Indian Ocean warming is responsible
for a Rossby wave source over Southeast Asia hence significant in affecting the extratropical
circulation anomalies during ENSO. Su et al. (2001) also found in their simplified AGCM
that the western Pacific convection associated with the 1997/98 El Nifio was suppressed by the
local cooling and the Indian Ocean warming but not by the strong El Nino warming in the
eastern equatorial Pacific. Both of their results are consistent with our hypothesis in terms
of the role of Indian Ocean and western Pacific SST anomalies in the ENSO teleconnection.
On the other hand, in a series of intriguing GCM experiments to explore the impact of El
Nino on the Asian monsoon and the atmosphere—ocean system in the Indian Ocean, Lau and
Nath (2000) simulated the Philippine Sea anticyclone realistically even with the tropical Pacific

SST anomaly alone. If this has been due to negative SST anomalies in the western Pacific,
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the relative impact between Indian Ocean warming and in-situ cooling on the western Pacific
convection might be dependent upon model used.

The moist LBM is yet in progress although it already involves the core of diabatic processes.
One of caveats in the current moist model is the lack of surface evaporation anomaly over lands
as mentioned in section 2c. Because of the small heat capacity, surface temperature 7 cannot be
prescribed over lands hence should be determined via the balance among surface heat budgets.
Besides an anomaly of soil wetness is required for the accurate estimate of the anomalous heat
fluxes over the land area. A possible way to solve this problem is to couple a simple land surface
model with the moist LBM. It may enable us to apply the model to phenomena in which the
diabatic heating over continents is of importance such as the Asian summer monsoon.

Another progress will be made by incorporating diabatic heating associated with stratiform
clouds into the model. Since the stratus rainfall dominates over the midlatitude ocean, such
an extension may provide the moist LBM used to examine the atmospheric response to extrat-
ropical SST anomalies. This issue is still a quite attracting problem, but it would additionally
necessitate to parameterize feedbacks from transient disturbances as well since previous works
suggest the transient eddy feedback of importance in determining the atmospheric response to

midlatitude SST forcing (e.g. Peng and Whitaker 1999; Watanabe and Kimoto 2000).

7 Concluding remarks

The moist LBM delineated in this study is placed in the first step of advanced application
of the linear atmospheric modeling which we aim. In the present paper we used this model to
examine the atmospheric teleconnection associated with ENSO, but the model may be applied
to wider issues when we include some other physical processes into the LBM as discussed in
the previous section. Apart from forced steady problem, an exploration of free modes of the
coupled dynamical-convective system will also be an interesting challenge in particular if the

moist LBM was coupled to a simple, linear ocean model. Some of these works are currently
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ongoing.

The reason why convections are suppressed over the western Pacific during EI Nino has
been argued such that they are simply a consequence of the eastward shift in the Walker
circulation. However, it turned out from the moist LBM diagnoses that the actual processes
are not so simple although there is no doubt that El Nino originates them. The mechanism
for the convective suppression over the western Pacific may involve the atmosphere—ocean
system in the Indian Ocean, and therefore, it suggests that the prediction of East Asian climate
associated with ENSO can be improved by means of a coupled model relevant to simulate a
coupled atmosphere—ocean response in the Indian Ocean to El Nino. The possibility which we

postulate here should be carefully verified.
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Figure captions

Table 1 Description of moist LBM experiments. The zonally varying basic state is denoted as

3D whereas its zonal average is indicated by ZM.

Fig.1 Vertical profiles of (a) A(0) and (b) B(o) along 180°E, as a function of the winter basic

state. The contour interval is 0.05 and the shading denotes values greater than 0.5.

Fig.2 (a) Basic state CAPE and (b) the convective efficiency e, derived from CAPE. The

-1

contour interval is 1000 J kg™ and 0.2, respectively, with a supplemental contour of 0.1

in (b). Shading denotes e, greater than 0.8.

Fig.3 Composite differences between El Nifios and La Nifias for observed winter (a) SST, (b)
OLR, and (c¢) 500 hPa height anomalies. The contour intervals are 0.5 K, 15 W m~2, and
20 m, respectively. Anomalies significant at 95% level are shaded. Thick black borders

in (a) indicate the area division for moist LBM experiments (see Table 2).

Fig.4 (a) Scatter plot of observed OLR anomalies against SST anomalies over the central-
eastern equatorial Pacific (170°E-90°W, 10°S-10°N). Composites for El Nino, La Nina,
and the difference are indicated by red, blue, and orange dots, respectively. (b) As in (a),
but for < ). > diagnosed in the moist LBM against given SST anomalies. Note that the

axis for OLR is reversed for comparison with < @', >.

Fig.5 (a) Vertically averaged heating, < ), >, given to the dry LBM and (b) steady 500 hPa
height response to the heating. (¢)—(d) < Q. > and 500 hPa height responses in the moist
LBM to SST anomalies in the region I (M1). The contour interval is 1 K day™' for (a)
and (c¢) while 20 m for (b) and (d). The shading in (¢) denotes < @, > less than -0.5 K

day 1.

Fig.6 (a) As in Fig. 3, but for 1g50 (contour) and OLR, (colors in W m~2). (b) Steady g0

response in the dry LBM to the prescribed heating over the eastern equatorial Pacific.

31



The color shading denotes < @ > in K day™'. (c) As in (b), but for the response to
the cooling over the maritime continent added to the heating in (b). The same contour

1

interval of 2 x 10® m? s™' is used for (a)-(c).

Fig.7 Steady tg50 and wsgp responses (black and white contours) in the moist LBM to SST
anomalies in the region I under the (a) zonally uniform and (b) zonally varying (M1, see
Table 2) basic states. The contour interval is 2 x 10° m? s™! and 5 x 10~* hPa s}, with

shading for | wseo | greater than 2 x 10-* hPa s !

Fig.8 Steady 1350 (contour) and < @, > (colors, in K day ') responses in the moist LBM (a)
M1, (b) M2, and (¢) M3. The contour interval is 2 x 106 m? s~

Fig.9 As in Fig. 8, but for differences in < ), > (contour) and the 850 hPa wind (vector)
between (a) M1 and M2, and (b) M2 and M3. The contour interval is 0.5 K day™"'.

Fig.10 (a) ENSO composite anomalies in temperature (contour) and wind (vector) at 850 hPa
calculated as in Fig. 3. The contour interval is 0.5 K. (b) As in (a), but for the steady

response in M3.

Fig.11 Steady w response over the equatorial strip (10°S—10°N) in (a) M1 and (b) M3. The

1

contour interval is 2 x 107* hPa s~! and the descending area is shaded. SST forcing

averaged over the same strip is also shown at the bottom of each panel.

Fig.12 Difference in wind (vector) and diabatic heating (contour) at the surface, between
steady responses with and without the wind—evaporation feedback (M3-M4). The heating
is converted to the thermal forcing for the ocean, with the contour interval 25 W m™2.

(b) SST forcing to M3 and M4, the contour interval 0.2 K.

Fig.13 Lagged composite (difference between El Ninos and La Ninas) based on the Nino 3
SST index for observed (a) g5 over 100°-140°E, 0°-20°N and (b) wsgy over 40°-80°E,

10°S-10°N. Regions for the spatial average are shown in the top-right panel.
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Fig.14 As in Fig. 13, but for (a) wsgo and (b) SST anomalies both averaged over 10°S—10°N.

1

The contour interval is 1 x 10~* hPa s~! and 0.5 K, the shading indicating ascending in

(a) and SST anomalies greater (less) than +0.5 (-0.5) K in (b), respectively.

Fig.15 Schematic diagrams showing the role of Indian Ocean SST anomalies for the Philippine
Sea anticyclone. Gray arrows and circles represent the anomalous Walker circulation and
the low—level circulation without (upper) and with (lower) the Indian Ocean warming.

The symbol @) denotes the anomalous convective heating.
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Table 1. Description of moist LBM experiments

abbreviation SST forcing basic state wind—evaporation feedback
M1 region | 3D on
M1Z region | M on
M2 region |-+l 3D on
M3 region |41+l 3D on
M4 region |41+ 3D off
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