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ABSTRACT 

A new approach, referred to as the accelerated iterative method (AIM), is 

developed for obtaining steady atmospheric responses with zonally varying basic state.  

The linear dynamical operator is divided into two parts, one associated with the zonally 

symmetric component and the other with the asymmetric component of the basic state. 

To ensure an accelerated convergence of the iteration to the true solution, the two parts 

of the operator are modified by adding and subtracting an identical “accelerating” 

operator. AIM is shown to be an efficient scheme well suited for computing higher 

resolution, steady atmospheric response of barotropic and more so of baroclinic 

numerical models linearized about a zonally varying basic state.  

A preliminary application of AIM to the T42 baroclinic model linearized about 

the observed winter (December-February) climatology is presented. A series of steady 

responses forced by the diabatic heating and transient eddy forcing, both estimated from 

reanalysis data for individual winters during 1960-2002, captures a certain part of the 

observed interannual variability associated with dominant teleconnection patterns, such 

as the North Atlantic Oscillation and the Pacific/North American pattern.  

Thus AIM should be a useful tool for the diagnostic studies of the low-frequency 

variability of the atmosphere. 
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1. Introduction 

Monthly and/or seasonal mean anomalies in the large-scale atmospheric 

circulation are central pieces for our understanding of the interannual climate variability. 

Regardless of their origin, whether forced by external forcing or generated through 

internal processes of the atmosphere, the spatial structures prevailing in such time-mean 

atmospheric anomalies have been classified into several teleconnection patterns 

(Wallace and Gutzler 1981; Barnston and Livezey 1987; Kushnir and Wallace 1989; 

among others). Understanding the generation and maintenance mechanisms of these 

teleconnection patterns is still an ongoing research topic (Wallace 2000; Hurrell et al. 

2003; references therein).  

In numerous studies, linearized atmospheric models are shown to be useful tools 

to elucidate dynamical processes of the time-mean atmospheric anomalies. In particular, 

the linear baroclinic model (LBM) that consists of primitive equations linearized about 

the climatological mean state has been developed by several research groups to 

reproduce the anomalies in the global atmosphere. This approach leaves out important 

questions regarding the dynamics for the observed climatological state. Nevertheless, 

the LBMs capture enough of the observed teleconnection patterns. In the classic paper 

of Hoskins and Karoly (1981), steady solutions forced by idealized thermal and 

orographic forcing are calculated based on the 5-level LBM. This study provides 

insights into the energy propagation of stationary Rossby waves and their association 

with the extratropical circulation anomalies observed during El Niño, which strongly 

project onto the so-called Pacific/North American (PNA) pattern (e.g., Horel and 
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Wallace 1981).  

When the primitive equations are linearized about a zonally uniform state, as in 

Hoskins and Karoly (1981), the forced steady problem can be separately solved for each 

zonal wavenumber. Because of this simplification, models with this feature are 

important diagnostic tools called stationary wave model (SWM). These models are 

widely used to simulate either anomalous or climatological stationary waves (for a 

comprehensive review see Held et al. (2002)).  

By examining steady solutions with a zonally varying basic state, it gradually 

became clear that the climatological zonal asymmetry in the basic state is crucially 

important for simulating the anomalous atmospheric circulation (Branstator 1990; Ting 

and Lau 1993; Ting and Sardeshmukh 1993; DeWeaver and Nigam 2000; Peng and 

Robinson 2001). Branstator (1990) demonstrated that the steady responses have a 

preferred structure with the 3D basic state even if the forcing is spatially random. Some 

of the prevailing patterns found in his LBM are quite similar to the patterns of dominant 

circulation anomalies identified in a general circulation model (GCM) about which the 

LBM is linearized, indicating that the coupling between the atmospheric anomalies and 

the climatological zonal asymmetry is one of the major sources for the large-scale, low-

frequency variability of the extratropical atmosphere. Watanabe and Jin (2004) carried 

out a similar, but more sophisticated, analysis of the singular vectors of the LBM using 

the observed winter 3D climatology as the basic state. They showed that some of the 

dominant teleconnections may be regarded as near-neutral dynamical modes of the 

zonally asymmetric mean state.  

When using the LBM with non-zonal basic states, we face a technical and 

critical obstacle: the linear dynamical operator matrix becomes too huge to be inverted 
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directly. In most of the previous studies in which steady responses are obtained by the 

matrix inversion technique one resorts to a coarse spatial resolution of, say, 15-20 zonal 

wavenumbers and less than 10 vertical levels (Navarra 1990; Branstator 1990; Ting and 

Held 1990; Ting and Lau 1993; Watanabe and Kimoto 2000). This reduction in spatial 

dimensions is often justified by arguing that the observed seasonal mean anomalies are 

dominated by planetary-scale components which are resolved adequately. However, the 

forcings in many cases have a much finer structure, and the small-scale eddies may 

modify large-scale eddies via their coupling with the zonal asymmetries in the basic 

state. The above then mitigates in favor of having much finer resolution. 

There are at least two different ways to deal with the above dimensional 

constraint. The first method consists of simply integrating the model in time (Hall and 

Sardeshmukh 1998; Peng and Whitaker 1999; Peng and Robinson 2001). The time 

integration approach has the advantage that it can also handle nonlinear models (Jin and 

Hoskins 1995; Ting and Yu 1998). Its drawback is that it may not be very efficient 

computationally. The second method consists of solving the linear operator matrix with 

the help of advanced algorithms. For example, in Branstator (1992) steady responses are 

obtained using the out-of-core algorithm which saves the computer memory. 

Alternatively, DeWeaver and Nigam (2000) parallelized the model, rendering it very 

efficient in inverting large matrices by using scalable routines.  

In the present study, an alternative method based upon a relaxation scheme is 

explored. Because the SWM* is much easier to solve than the full LBM, we construct a 

scheme that first calculates the steady response to a zonally symmetric basic state by the 

                                                 
* The SWM ordinarily refers to a model that solves only for wave components, but in 
this study the zonal-mean (wavenumber zero) component is also calculated. 
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direct method. We then correct that solution iteratively so as to satisfy a dynamical 

balance with the zonally varying basic state. We refer to this scheme as the accelerated 

iterative method or AIM; the “acceleration” is achieved through a modification of the 

linear operator that provides for, as we shall soon see, fast convergence of the numerical 

iteration. 

This paper is organized as follows. The mathematical bases of AIM used in 

linearized atmospheric models are described in the next section. In section 3, the 

attributes of AIM, such as convergence, accuracy and comparison with other numerical 

methods, are examined for the case of the barotropic model. In section 4 AIM is applied 

to the LBM and emphasis is placed on hindcasting the observed interannual variability 

in the teleconnection patterns. A summary and discussion of this work are presented in 

section 5. 

 

2. Models and methodology 

a. Principle of AIM 

 The general expression describing the time evolution of linear atmospheric 

perturbations is written in the matrix form as 

d ( )
d a c at

+X L X X F=    ,       (1) 

where  denotes the perturbation state vector of the atmosphere, F  is the external 

forcing, and L  is the dynamical operator of the governing equations which is a linear 

function of basic state . For steady problems, a given forcing F  is prescribed and the 

perturbation vector  is obtained by inverting L  so that .  This inversion 

is easily obtained for a small matrix, such as the one found in a barotropic model. As 

aX

cX

aX 1
a

−=X L F

 6



 

mentioned in the introduction, LBMs, even those having coarse horizontal and vertical 

resolutions consisting of T21 in the horizontal and 20 levels in the vertical, the size of 

 exceeds 3×10L 4. To proceed with the development of AIM, we divide the basic state 

into the zonally symmetric and asymmetric parts, denoted as cX  and , respectively, 

and write (1) for a steady problem as 

*
cX

*( ) ( )S c a A c a+L X X L X X F=   ,                                                          (2) 

where  (SL AL ) is the dynamical operator linearized about cX  ( ). Since  

consists of block matrices for each zonal wavenumber, it can be easily inverted. As a 

consequence an iterative scheme for (2) may be constructed as 

*
cX SL

    ,    (3) n+1 1 n 1 n
a S A a S a

− −= − + = +X L L X L F MX G

where n indicates the iteration step while the matrix M  and the vector G  represent the 

iteration operator and the modified forcing in the iterative scheme, respectively. 

 Equation (3) has the same form as the conventional Jacobian relaxation, leading 

to the convergence condition in terms of the spectral radius of M  (cf. Meurant 1999; 

Kalnay 2003), namely 

  ( ) max 1jρ σ=M <  ,      (4) 

where the spectral radius ρ is defined by the maximum of the absolute eigenvalues of 

, M jσ . As will be shown later, the condition (4) is in general not satisfied for the 

steady atmospheric problem.  

We shrink the eigen-spectrum of M  by introducing in (2) an accelerating 

operator matrix denoted as  so that R

  ( ) ( )S a A a+ + − =L R X L R X F    .     (5) 
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 The modified iterative scheme becomes 

n+1 1 n 1( ) ( ) ( )a S A a S
−= + − + +X R L R L X R L − F

,

1

  ,   (6) 

with  . The acceleration matrix R  in (6) is chosen to ensure that 0 0a =X

*( ) 1  ρ <M         (7) 

where the iteration matrix  is defined as *M

          (8) * 1( ) ( )   ,S A
−≡ + −M R L R L

The choice of the form of R  in (8) is crucial for the success of AIM. The first 

criterion is that real parts of the eigenvalues of R  are all positive, which is 

demonstrated as follows. When the norm of R  is sufficiently large, we will have the 

following first order Taylor expansion to : *M

* −≈ −M I R L

)

 ,      (9) 

where  denotes an identity matrix and  is defined in (1). Since, by definition, all the 

eigenvalues of R  have positive real parts, from (9), it turns out that the spectral radius 

 is always smaller than 1 if the real parts of eigenvalues of L  are all positive, 

i.e., no instability occurs. Thus when the operator L  is dynamically stable or near 

neutral, the scheme (6) is guaranteed to converge. 

I L

*(ρ M

 Consider a simple case where / t= ∆R I , t∆  being the time interval used in the 

integration (1). This R  satisfies the above criterion and (6) may be regarded as a semi-

implicit scheme. Intuitively, in order to “accelerate” the “time stepping”, larger 

(smaller)  may be used for large-scale (small-scale) waves. From this point of view, 

it would seem obvious that the choice of a scale dependent R  would accelerate the 

scheme outlined in (6) and will yield in a steady solution in which different timescales 

t∆
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are used for different wave components in the spectral domain. 

Furthermore, for computational efficiency, R  ought to be decomposed into 

block matrices so that  is inverted separately for each zonal wavenumber. For 

these reasons, we write  as: 

S+R L

R

γ=R D    ,        (10) 

where γ  is a parameter while D  is the matrix containing a scale-selective diffusion 

used in the model. The operator D  becomes a diagonal matrix when this method is 

applied to spectral models. From the above choice of R  in (10), it can be inferred that 

there is an optimal value of γ  for fast convergence. When γ  is zero, (6) reduces to (3) 

which may diverge. When γ  is too large, the spectral radius of  will be close to 1, 

resulting in very slow convergence. It will be shown in the next section that indeed 

there is a certain moderate value of 

*M

γ  that makes the scheme (6) converge most rapidly. 

We note that when implementing the scheme (6), we only need to calculate and invert 

the block matrix ( ) for each zonal wavenumber, which is done once and for all. 

There is no need to obtain and store the large matrix 

S+R L

AL , rather we use the rhs terms of 

the model equations to directly calculate the vector n( )A a− +R L X F  as in the 

conventional tendency calculation for the time integration. Thus, each iteration requires 

nearly the same amount of calculations as if we were integrating the model one step 

forward. As long as the block matrices are inverted beforehand, the iteration does not 

involve any large matrix operations and thus AIM as expressed in (6) and (10) is highly 

efficient. 
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b. Linear atmospheric models 

To verify the implementation of AIM, we use two different atmospheric models: 

a simplified one, which is easy to handle, and a complicated one which is more realistic, 

but computationally expensive. The former follows a barotropic vorticity equation 

linearized about the observed 300 hPa mean flow whereas the latter is the LBM which 

we have developed previously (Watanabe and Kimoto 2000, 2001; Watanabe and Jin 

2004). Both models are based on the exact linearization of nonlinear spectral equations. 

The barotropic model is used to examine the attributes of AIM, for example its 

convergence, efficiency, and resolution dependence; this investigation is presented in 

the next section in which the steady streamfunction response to an idealized tropical 

forcing is repeatedly calculated with different resolutions of T21, T42, T63, and T106. 

The model employs the biharmonic diffusion corresponding to D  in (10), whose 

coefficients depend on the resolution used (see Table 1), and the Rayleigh friction with 

the damping timescale of 10 days. The model basic state is derived from the winter 

(December-February) mean climatology of the ECMWF reanalysis data (ERA40) 

during 1961-1990 (Uppala et al. 2006) while the idealized vorticity source which 

mimics the anomalous divergent forcing during El Niño follows Branstator (1985). We 

note that the characteristics of AIM crucially depend on the dynamical operator but not 

on the forcing structure.  

We also have performed a series of the barotropic model calculations using the 

winter climatology derived from the NCEP-NCAR reanalysis data during 1949-1999 

(Kalnay et al. 1996). The results are not shown, but are similar to those with the ERA40 

basic state, except that the convergence is slightly different, mostly due to small 

difference in the AL  operator.  
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The LBM is based on an exactly linearized set of equations for vorticity (ς ), 

divergence (D), temperature (T), and the logarithm of surface pressure ( ln Psπ = ). The 

model variables are expressed horizontally by the spherical harmonics as in the 

barotropic model but the truncation is fixed at T42 while the finite difference is used for 

the vertical discretization which is fixed at 20 σ -levels. The model includes three 

dissipation terms: a biharmonic horizontal diffusion associated with ς , D, and T, a 

harmonic vertical diffusion (damping timescale of 1000 days) to remove a vertical noise 

arising from finite difference, and the Newtonian damping and Rayleigh friction as 

represented by a linear drag. The drag coefficients have a damping timescale of 0.5 days 

at the lowest four levels ( 0.9σ ≥ ), and also at the topmost level to prevent a false wave 

reflection at the top boundary. In between these levels the (30 days)-1 damping is 

applied, which does not seriously affect the amplitude and structure of the response. The 

boundary layer damping adopted here roughly follows the mixing coefficients evaluated 

with the Mellor-Yamada closure in the CCSR/NIES AGCM which we used to develop 

the LBM. These mixing coefficients are strong enough to neutralize baroclinic 

instability waves in the system (Hall and Sardeshmukh 1998). When applying AIM to 

this model, the coefficient of horizontal diffusion is an important parameter, which is 

fixed at a relatively large value corresponding to the damping timescale of 2 hours for 

the smallest wave. The basic state of the LBM is adopted from the winter 3D 

climatology of the ERA40 during 1961-1990, as in the barotropic model.  

 

c. Forcings of the LBM 

The forcings prescribed to LBM consist of anomalies of the diabatic heating and 

of the transient nonlinear terms also denoted as the transient eddy forcing; both forcings 
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are calculated using the 6-hourly ERA40 data during 1960-2002. The diabatic heating 

field is obtained as the residual of the thermodynamic equation in pressure coordinates 

(cf. Yanai et al. 1992). At the grids where the surface pressure is greater than 1000 hPa, 

the zero heating is interpolated when converting from the pressure to sigma coordinates. 

The winter anomalies of the diabatic heating are calculated by subtracting the monthly 

climatology for 1961-1990 from monthly fields, and taking the average during the 

winter season for 43 years. The transient nonlinear terms contain both the vorticity and 

thermal fluxes due to submonthly disturbances. Before calculating the eddy forcing, 

submonthly eddy fields are interpolated on to the T42 σ -surfaces, and then the 

horizontal and vertical fluxes of vorticity and sensible heat are calculated following the 

primitive equations used by the LBM. After the winter anomalies of these fluxes have 

been calculated, they are converted to the spectral space and the eddy forcings are 

calculated by taking the convergence of these fluxes. In the next two sections we focus 

on the attributes of AIM in the barotropic model, section 4, and in the LBM, section 5. 

 

3. Verification of AIM using the barotropic model 

a. Measures of convergence 

In this section we investigate the efficient manner in which AIM reaches a 

steady forced solution in barotropic models. The approximate solution at each iteration 

step is compared to the true solution obtained beforehand by the conventional matrix 

inversion technique. The criterion for convergence, ε , is defined here by the RMS error 

between the true and AIM solutions, 

  n n /a a a aε = − −X X X X1    ,     (11) 
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where  denotes the true solution represented by the anomalous streamfunction in 

case of the barotropic model, whereas  is the AIM solution at nth step. In order to 

eliminate the dependence of ε on the model resolution and magnitude of the forcing, the 

RMS error is normalized by the error at the first step . For huge matrices which 

cannot be solved directly, as in case of the LBM, another measure of convergence is 

used; it does not involve the knowledge of the true solution and that measure is 

provided by the normalized differential norm, 

aX

n
aX

1
aX

  n n n-1 2 1/      (n>1)a a a aλ = − −X X X X    .    (12) 

 

b. Basic properties of AIM 

Figure 1 shows the RMS error ratio, ε , defined by (11) for the T21 barotropic 

model response; in that figure the evolution of ε  is plotted for different values of γ  

(from 1 to 9). For 0γ = ,  corresponding to * =M M , the error immediately increases 

exponentially. For 5γ ≤ , ε  initially decreases and then increases as the number of 

iterations increase culminating to an AIM solution that blows up. When γ  is 7, the error 

continuously decreases and reaches 10-3 around n=100. A similar evolution is found for 

7γ >  with slightly slower convergence; therefore, AIM solutions for 7γ ≥  converge, 

those having with 7γ =  are the fastest to converge and that value is the best choice in 

this case. From Fig. 1 we note that the error reduction is not monotonic due to a small 

amplitude oscillation. This fluctuation disappears when R  includes the linear drag as 

well, which, however, results in the slower convergence (not shown).  

Section 2a showed that the spectral radius of  is reduced when *M γ  is large, 
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ensuring convergence of AIM solutions for sufficiently large γ . Figure 2 provides a 

graphical verification of this. Plots of the eigenvalues in the complex domain clearly 

indicate for which value of γ  the spectral radius ( )ρ M  is greater than unity (Fig. 2a, b), 

implying divergence of AIM solutions, and for which values of γ  the spectral radius is 

less than unity (Fig. 2c, d), implying convergence of AIM solutions. Since  

approaches the identity matrix for 

*M

γ → ∞  (cf. (8)), it is not surprising that for 

100γ =  the eigenvalues are clustered around (0, 1) in the complex plane (Fig. 2d).  For 

the T21 barotropic model shown in Fig. 2, the best choice of γ  is 7γ =  (cf. Fig. 1), in 

this case the eigen-spectrum is ‘shrank’ the most toward the origin (not shown).  

It was shown in Fig. 1 that if we allow the 10% (1%) error, only 12 (40) steps 

are necessary to obtain the steady response for the T21 model (see also Table 1). 

Efficiency of this convergence rate is compared with that in the other two iterative 

methods: the conventional time integration and the conjugate gradient (CG) method, the 

latter also known in the Krylov subspace techniques (Greenbaum 1997). The time 

integration employs the interval of ∆t=60 minutes which is determined from the CFL 

condition. The CG method is applied on a symmetric matrix, so that the transpose of L  

has been multiplied to L  before the iteration. To justify the comparison, both time 

integration and CG solver adopt the first guess  obtained from AIM. The result in 

terms of the RMS error ratio is presented in Fig. 3, which shows that AIM is the most 

efficient scheme. The iteration steps for the steady solution with 10% error are 12 for 

AIM, 147 for CG, and 379 for the time integration (roughly 16 days), respectively.  

1
aX

The spatial pattern of the streamfunction response to the idealized vorticity 

forcing is displayed in Fig. 4a. While the structure of the response is not the subject in 
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the present test, one clearly sees the stationary Rossby waves emanating from the 

equator into both hemispheres, a feature found in many studies (e.g., Branstator 1985). 

A first guess for the AIM solution with 7γ =  is shown in Fig. 4b; it also reveals such 

wave trains even though their amplitude is weaker than the true solution. The steady 

solutions in CG and AIM with the 1% RMS error obtained at n=292 and n=40, 

respectively, are almost identical to the true response (Figs. 4c and 4d). The overall 

pattern and amplitude of these approximate solutions are quite similar even when the 

error is 10% (not shown). 

 

c. Dependence on the intrinsic diffusion 

 In choosing the form of R , we have considered that the scale-selective matrix 

acts as accelerator of the iteration and that the efficiency is controlled by γ . We note 

that the inertia of each wave depends on the magnitude of the intrinsic diffusion of the 

system, i.e., D  in (10); therefore, the convergence efficiency of AIM may also be 

affected by changing D . Specifically, it is reasonable to speculate that the convergence 

of the AIM solution will be slower (faster) for weaker (stronger) intrinsic diffusion of 

the dynamical operator. The is verified by evaluating ε  in the T21 barotropic model 

used in Fig. 1 but with the e-folding decay timescale of the horizontal diffusion altered 

from 1 day to either half a day or 2 days.  In both cases the AIM solution successfully 

converged with the best choice of γ , which varies from the original value. The resultant 

profiles of ε  reveal that the iteration steps drastically change when smaller values of 

ε  are used to measure the convergence (Fig. 5). For 0.01ε =  (1% error), which is a 

typical threshold, the necessary iteration is shortened to 24 steps with stronger diffusion 
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while lengthened to 82 steps with weaker diffusion.  

The result shown in Fig. 5 indicates that the convergence rate is highly sensitive 

to the magnitude of diffusion present in the dynamical operator. This result may also 

imply that the computational efficiency of AIM remains the same for different spatial 

resolutions as long as the diffusion coefficient is preserved. This is indeed seen in Fig. 6 

which summarizes the iteration steps for convergence at various resolutions. In that 

figure, for 0.01ε = , AIM’s last step, n, is calculated in barotropic models at T21, T42, 

T63, and T106. Three methods of iteration were used and the results of each of these 

methods are presented. The number of the degrees of freedom (gray line) provides the 

theoretical maximum of n for CG and AIM. When the diffusion coefficient is kept fixed 

at the T21 version, the iteration steps for CG and time integration increase at higher 

resolution while those for AIM are almost constant (dashed lines in Fig. 6). This 

comparison clearly demonstrates that AIM is the most efficient method, in particular 

with higher resolution. While this resolution-independent property is one of the 

advantages of AIM, this advantage may not be implemented in practice since the 

diffusion is resolution dependent. To wit, the decay time of 24 hours in T21 corresponds 

to 1.5 hours in T42, 19 minutes in T63, and only 2.4 minutes in T106. In general, the 

scale-selective diffusion is included to remove the enstrophy accumulation near the 

truncated wavenumber, so that a strong diffusion does not make physical sense. When 

we used more ‘plausible’ diffusion coefficients which are smaller at higher resolution 

(see Table 1), the convergence rate of AIM, as well as that of the other two methods, 

depends on the resolution (solid lines in Fig. 6). Nevertheless, AIM is still shown to be 

much more efficient than CG, and more than one order faster than the time integration. 

Before extending AIM to the LBM, the relationship between the RMS error ratio 
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(ε ) and the differential norm ( λ ) is briefly examined in the barotropic framework. 

Figure 7 shows the evolution of λ  against ε  of the AIM solutions at different 

resolutions. The solutions used here correspond to the solid line in Fig. 6 (i.e., the 

diffusion coefficients are not common among four resolutions), but the result is 

essentially the same for solutions with the common diffusion coefficients. Overall, the 

two measures shown in Fig. 7 are linearly proportional, inferring that 0.01λ ≈  roughly 

corresponds to the 1-3% error in ε ∗. 

 

4. Application to LBM 

a. Simulation of 1997/98 anomalies 

In the previous section, AIM was found to be a very efficient scheme when used 

in a barotropic model; in this section AIM is applied to the more challenging LBM. As 

described in section 2b, the ERA40 winter climatology during 1961-1990 was used as 

the basic state. Following Fig. 7, the convergence is evaluated with the threshold of 

0.01λ = . As an example of the LBM diagnosis, 1997/98 winter anomaly field is chosen 

since it exhibits a large ENSO teleconnection. Figure 8a shows the horizontal wind 

anomalies at 850 hPa and the geopotential height anomaly at 300 hPa as observed 

during winter 1997/98, and illustrating the PNA-like circulation anomaly over the North 

Pacific in addition to the anomalous westerly (easterly) over the equatorial Pacific 

(Indian) Ocean. On one hand, when AIM is used with the T42 20-level LBM with the 

zonally asymmetric basic state to calculate the steady linear response to the combined 

forcing of diabatic heating and transient eddy fluxes, cyclonic and anticyclonic 
                                                 
* The reduction of λ  tends to be slow for 0.01λ < , so that the threshold of 0.01λ =  
greatly saves the computational time while the solution is quite similar to that with one 
order smaller λ . 
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anomalies appear at the correct positions over the North Pacific and North America, 

respectively (Fig. 8b). On the other hand, when the steady LBM response with the 

zonally symmetric basic state, i.e., SWM, is used the solution reveals that the equatorial 

wind anomaly is reproduced but the PNA-like pattern is not well reproduced (Fig. 8c). 

The difference between Figs. 8b and 8c points at the significant role of climatological 

stationary eddies in forming the extratropical teleconnection patterns, as was outlined in 

the introduction. The LBM response pattern in Fig. 8b is overall quite similar to the 

observation while there are discrepancies as well: the circulation anomaly over northern 

Eurasia is shifted to the west and the response over the PNA region is slightly weaker 

than the observation.  

 The sea level pressure (SLP) response associated with Fig. 8b is compared to 

the observed SLP anomaly (Figs. 9a and 9b). Except for the polar cap away 80°N, the 

steady SLP response captures the major high and low pressure anomalies. It should be 

noted, however, that the magnitude of the SLP response is about 70% of the observed 

anomaly. The cause of this underestimation plausibly comes from the difference in the 

vertical profile of temperature anomalies. The vertical structure of the observed 

temperature anomaly at 50°N indicates that the maxima are occurring near the surface, 

in particular, over land regions (Fig. 9c).  In LBM, such large temperature response is 

not found because of the strong boundary layer damping which is necessary to prevent 

the baroclinic instability (Fig. 9d). Following the hydrostatic relation, the geopotential 

height response becomes weak as well, resulting in underestimation of the SLP response 

which is related to the vertical integral of the height response. The uniform drag on σ  

surfaces does not affect the horizontal structure of the response, so that the SLP 

response which has a reasonable spatial pattern is considered to be a relevant quantity in 
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evaluating the reproducibility of LBM solutions. 

 

b.  LBM hindcast 

 Despite some discrepancies, LBM solutions capture many features of the 

observed atmospheric anomalies during 1997/98 El Niño. Encouraged by this result, we 

attempted to hindcast the anomaly fields for 1960-2002 by solving the steady problem 

for each winter. For comparison the steady response with the zonally symmetric basic 

state is also calculated; we will refer to solution as the “SWM hindcast”. 

 The capability of LBM in hindcasting the winter anomaly fields is first evaluated 

with the standard deviation of the 500 hPa height anomalies (Fig. 10). In observations, 

the maxima of the height variance are identified over the central North Pacific, 

Greenland, and north of Siberia, respectively (Fig. 10a). The height standard deviation 

in the full LBM hindcast (Fig. 10b) is comparable to observations both in terms of the 

amplitude and the position of maxima. The variance distribution over the North Pacific 

is the exception, which reveals the center split into two parts, unlike Fig. 10a. The 

standard deviation of the SWM hindcast (Fig. 10c) shows a pattern similar to the 

observations but weaker in magnitude. However, the locations of all the maximum 

variances do not coincide with observations, except for the peak south of Greenland. 

Since the zonally symmetric response has a significant contribution to the variance map, 

the SWM hindcast in which the zonally symmetric component is less reliable produces 

a worse result. 

 A more challenging task of the LBM hindcast is to examine the extent to which 

the interannual variability of the dominant teleconnections can be simulated. The first 

attempt is simply to compare several climate indices: Southern Oscillation Index (SOI), 
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PNA index, and the North Atlantic Oscillation (NAO) index. The SOI is conventionally 

defined by the normalized SLP difference between Tahiti and Darwin, while the PNA 

and NAO indices are defined with four action centers on the 500 hPa height (Wallace 

and Gutzler 1981) and normalized SLP difference between Lisbon and Stykkisholmur 

(cf. Hurrell et al. 2003), respectively. Correlation coefficients between these indices 

obtained from observations and the LBM hindcast were 0.87 for SOI, 0.34 for PNA, and 

0.39 for NAO. Since the tropical atmosphere is known to obey simpler linear dynamics 

than say the midlatitude, it is not surprising that the hindcast SOI has a remarkable 

similarity to the observed index. The interannual variations in PNA and NAO indices 

are more difficult to be reproduced, so that the correlation between the observed and 

hindcast time series is significant but not as high as we expected. 

 The above results suggest that LBM captures, though not completely, a certain 

part of the extratropical atmospheric variability. To investigate further, we compared 

patterns of the leading empirical orthogonal function (EOF) to the winter SLP 

anomalies between ERA40 and the LBM hindcast. The EOF analysis is applied to the 

North Pacific (150°E-90°W, 20°-90°N) and to the North Atlantic (50°W-40°E, 20°-

90°N) separately in order to extract the regional features. The observed leading EOFs, 

which account for 40.6% and 48.3% of the total variance in each field, reveal the PNA 

and NAO, as presented by the 500 hPa height anomalies regressed on to the associated 

principal components (PCs) (Fig. 11a, b). The leading EOFs obtained from the LBM 

hindcast (Fig. 11c, d) do show similar patterns with slightly smaller fractional variance, 

even though the PNA-like structure is somewhat weak (Fig. 11c) and the NAO-like 

pattern accompanies another center over north of Siberia (Fig. 11d). Indeed, the PC time 

series for both the observed and hindcast EOFs (Fig. 12) are highly correlated with each 
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other (the correlation reaches 0.57 for the Pacific and 0.56 for the Atlantic), indicating 

that the LBM reproduces the interannual variability of the PNA and NAO to a certain 

degree. The correlation of the PC time series of the Pacific EOF with the observed PNA 

index is 0.73 for the ERA40 data while 0.55 for the LBM hindcast. A similar result is 

obtained with the observed NAO index: 0.78 for the reanalysis and 0.47 for the hindcast. 

In the hindcast, their spatial patterns contain some distortion (cf. Fig. 11c, d), which 

leads to worse reproduction of the station-based indices as described. 

The EOF analysis is also performed to the SWM hindcast (Fig. 11e, f). As 

highlighted in our Fig. 8 and in literatures (e.g., Ting and Lau 1993), SWM lacks an 

important source for the midlatitude circulation variability, namely, an energy 

conversion mechanism from the zonal asymmetry in the climatological state to the 

anomalous eddies, so that the leading EOFs are not only less similar to the observed 

patterns of PNA and NAO, but also less coherent (the correlation of the PC times series 

with the observed counterparts is 0.38 for the Pacific and 0.33 for the Atlantic).  

Once the dominant teleconnection is identified in the hindcast, the linearity 

enables us to attribute the prevalence to the individual forcing terms. To examine the 

relative role of the diabatic heating and transient eddy forcing to the leading EOF 

patterns shown in Figs. 11c and 11d, 500 hPa height responses forced by one of these 

forcings are regressed upon the PC time series. Shown in Figs. 13a and 13b are the 

regressed height responses forced only with the diabatic heating.  While the magnitude 

is about one third of the total response, they apparently project well onto the EOF 

patterns. It is noted that the regressed height responses have similar patterns in the 

SWM hindcast as well (Figs. 13c and 13d), implying that the linear response to the 

diabatic heating is less sensitive to the zonal asymmetry in the basic state, as found in 
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Peng and Whitaker (1999). If we refer to the previous works that emphasized the role of 

the so-called zonal-eddy coupling in forming the dominant teleconnections (DeWeaver 

and Nigam 2000; Watanabe and Jin 2004), this result suggests that the thermally forced 

response is primarily explained by simple stationary wave dispersion, with weak 

coupling with the zonal-mean anomalies. The regressed height responses forced only by 

the transient eddies, dominated by the eddy vorticity forcing, reveal larger magnitude 

and also have a strong projection onto the leading EOF patterns (not shown). Whether 

the thermally induced response in Figs. 13a and 13b can modulate the Pacific and 

Atlantic storm tracks, respectively, so as to force the pattern in Figs. 11c and 11d, i.e., 

while providing a positive feedback between the anomalous stationary eddies and 

transients, is beyond the scope of this study. Previous works support such a possibility 

(Peng and Whitaker 1999; Watanabe and Kimoto 2000; Peng and Robinson 2001; Pan 

et al. 2006).  

 It is interesting to regress with the model’s PC time series not only of the 

hindcast response but also of the forcing, which clarifies the optimal forcing structure. 

While the regressed pattern of the eddy forcing is quite noisy, the regression of the 

diabatic heating is more systematic (Fig. 14). For the PNA-like mode of variability 

shown in Figs. 11c and 13a, the heating has a deep vertical structure in the tropical 

Pacific, reminiscent of a typical precipitation anomaly pattern during El Niño (Figs. 14a 

and 14c). We note that the vertically averaged heating associated with the NAO-like 

variability shown in Figs. 11d and 13b has only a weak anomaly in the central 

equatorial Pacific (Fig. 14b), confirming that the NAO is less controlled by the remote 

tropical heating. However, it is noteworthy that a set of shallow heating and cooling 

anomalies is detected in the North Atlantic, which is likely to optimally force the NAO-
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like variability (Fig. 14d). These anomalies are confined below 0.7σ =  (vertical 

structure not shown), suggesting that they are related to the anomalous sensible and 

latent heat fluxes due to changes in storm track and sea surface temperature (SST). The 

heating anomalies in the North Atlantic thus appear to be partly indicative of the so-

called tripole SST forcing the NAO (Rodwell et al. 1999; Graham et al. 2005; among 

others).  

 

5. Summary and discussion 

In the past decade, on one hand numerical studies on the climate variability have 

used higher resolution GCMs. On the other hand, linearized atmospheric models have 

been shown to be relevant in delineating dynamical processes of the atmospheric 

anomalies. These models have been used at a coarse resolution due to practical 

constraint of inverting large matrices associated with the linear dynamical operator used 

in solving steady forced problems with the zonally asymmetric basic state. Motivated by 

the desire to solve these steady problems and dealing with LBM having a satisfactory 

resolution, we proposed an efficient method, called AIM, based on a relaxation 

algorithm.  

The central idea of AIM is to decompose the linear operator matrix into a group 

of block matrices associated with the zonally uniform part of the basic state and a large 

matrix associated with the non-zonal part; the block matrices can be easily inverted then 

the solution with the zonally uniform basic state is iteratively corrected by manipulating 

the latter. In general, such iteration does not converge for the dynamical equations of 

atmospheric models. An additional matrix ( , see section 2a) is introduced, not only to 

ensure the convergence but also to accelerate the iteration. The asymptotic convergence 

R
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to the true solution is accomplished by choosing  adequately which involves selecting 

the single parameter

R

γ  judiciously. 

The efficiency of AIM is first tested with the linear barotropic model (section 3). 

It is shown that AIM is successful in obtaining the steady solution with quite a small 

number of iterations. While the convergence rate is sensitive to the magnitude of 

intrinsic diffusion of the system, it is more than one order faster than the other iterative 

methods such as the time integration of the linear model. AIM is then applied to 

calculate the steady response with LBM in section 4. Given the thermal and momentum 

forcing due to diabatic processes and transient eddies estimated from the reanalysis data, 

LBM was shown to be capable of simulating the circulation anomalies during 1997/98 

El Niño.  

Steady solutions were then obtained in a similar manner for individual 43 

winters during 1960-2002, composing the hindcast anomalies using the LBM. Despite 

several discrepancies, the LBM hindcast shows the variance distribution of the northern 

extratropical height anomalies to be comparable to the observations, and reproduces a 

certain fraction of the interannual variability associated with the dominant 

teleconnection patterns such as PNA and NAO; those indices based on the hindcast 

responses are significantly correlated with the observed indices. Taking advantage of 

linearity, the model PNA and NAO as identified by the leading EOFs to the hindcast 

SLP anomalies can be divided into the direct, thermally induced response and the 

response to anomalous transients. The former has a strong projection on to the principal 

patterns of variability, and is optimally forced by the deep heating in the equatorial 

Pacific for PNA while the NAO is forced by the shallow heating in the North Atlantic. 

 AIM includes procedures for preparing and inverting the linear dynamical 
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operator matrices for each zonal wavenumber with respect to the zonally asymmetric 

part of the basic state. The most efficient application of AIM would therefore be to 

compute a number of steady responses with the same basic state but different forcing, 

such as the hindcast presented in section 4b. While the algorithm of AIM appears to be 

already efficient in the practical applications, further acceleration may be possible by 

changing the definition of . We have examined the possibility, but currently have not 

obtained a form of R  better than that found in (10); then, this issue remains a future 

research problem. 

R

The LBM hindcast was able to simulate the dominant low-frequency variability 

to some extent, but its reproducibility in terms of spatial and temporal fluctuations is not 

satisfactory (Figs. 11 and 12). This failure probably arises from an inaccuracy of the 

forcing terms. Since ERA40 data are provided on a linear grid at each pressure level, the 

forcing fields have to be interpolated both horizontally and vertically, resulting in an 

increase in the error. In particular, shallow heating over regions where surface pressure 

is above 1000 hPa cannot be adequately estimated from the pressure level data. We note 

that LBM forced by the forcing obtained from a GCM that shares the dynamical 

framework has been shown to yield better results in reproducing the low-frequency 

variability in the GCM (e.g., Ting and Lau 1993). We are currently testing the LBM 

hindcast and using AIM with GCM-generated anomalies. These investigations will be 

reported elsewhere. As a caveat, we note that the boundary layer mixing is modeled by 

a uniform drag, yet in nature it varies in space and depends on the stability and shear of 

the basic state (cf. DeWeaver and Nigam 2000). Errors associated with this coarse 

physical modeling may be present in the results we reported above. 

 As in most of previous studies, steady atmospheric problems are solved in this 

 25



 

study by prescribing the forcing due to diabatic processes and transient eddies. They are, 

however, partly dependent on the anomalous atmosphere, so that the LBM diagnosis is 

not actually closed. Our ultimate goal is to construct a linear atmospheric model that 

includes interactive moist processes (Watanabe and Jin 2003) and a linear closure for 

the two-way feedback between transient eddies and low-frequency anomalies (Jin et al. 

2006; Pan et al. 2006). These extensions may enable us to develop a coupled 

atmosphere-ocean model using LBM, in which a steady atmospheric component 

accommodates not only high resolutions but also other complexities much beyond Gill-

type intermediate models. For this purpose, we believe that AIM becomes a necessary 

and useful method and a handy tool for solving the steady atmospheric type of problems 

discussed in this work. 
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FIGURE AND TABLE CAPTIONS 

 

 

Fig.1 RMS error ratio (ε ) of the AIM solution as a function of the iteration step n. All 

the errors are computed by the T21 barotropic model with different values of γ . The 

fastest convergence is obtained with 7γ = , as indicated by the thick curve . 

Fig.2 Eigenvalue spectrum of  in the T21 barotropic model with (a) *M 0γ =  (equal 

to ), (b) M 1γ = , (c) 10γ = , and (d) 100γ = . iσ  and rσ  are the imaginary and real 

parts, respectively. A unit circle is drawn for reference.  

Fig.3 Same as Fig.1 but for ε  calculated from three different methods: AIM with 

7γ = , time integration, and conjugate gradient method. The 10% and 1% error levels 

are indicated by dashed lines. Note that three methods employ the same first guess. 

Fig.4 Steady streamfunction response to the equatorial divergent forcing (denoted by 

shading) obtained from the T21 barotropic model.  The contour interval is 1×106 m2 s-1 

while the negative contours are dashed. (a) True solution by the matrix inversion, (b) 

the AIM solution at n=1 with 7γ = , (c) the CG solution at n=292, and (d) the AIM 

solution at n=40. The RMS errors for (c) and (d) are 1%.  

Fig.5 Same as Fig.1 but for ε  calculated with different diffusion coefficients, varying 

from 12hr to 2dy damping timescale for the smallest wave. The best value of γ  

employed in each computation is also indicated.  

Fig.6 Number of iteration steps required for the convergence 0.01ε ≤  in the 

barotropic model with different horizontal resolution. Dashed lines with circle, triangle, 

and cross show the solutions obtained from AIM, CG, and time integration, respectively, 
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all employing the diffusion coefficient common to the T21 resolution. Solid lines are 

the solutions with the diffusion dependent on the resolution (weaker in higher resolution, 

following Table 1). The gray line indicates the number of degrees of freedom. 

Fig.7 Differential norm ratio, λ , against the companion RMS error ratio, ε , for the 

AIM solutions in the barotropic model. The values are plotted up to n=70 for T21, 

n=300 for T42, n=400 for T63, and n=800 for T106, respectively. The diffusion 

timescale for each resolution follows Table 1. 

Fig.8  Anomalies of the 850 hPa wind (vector, plotted for the magnitude greater than 1 

m s-1) and 300 hPa geopotential height (contour, interval of 40 m without zero contours) 

(a) observed during winter 1997/98, and (b), (c) obtained as a steady response to the 

observationally estimated forcing. The responses are calculated with T42 20-level LBM, 

with the 3D basic state in (b) and the zonally uniform basic state in (c). The 

supplemental thin contour of 20 m is also indicated in (b) and (c). 

Fig.9  (a) Observed and (b) calculated SLP anomalies during winter 1997/98, the latter 

associated with the steady response shown in Fig. 8b. The contour interval is 2 hPa, the 

zero contours omitted. (c), (d) Same as (a), (b) but for the temperature (contour, 1K 

interval) and height (shading) anomalies along 50°N. Topography resolved in LBM is 

presented by the black rectangles in (d). 

Fig.10  Standard deviations of the 500 hPa height anomalies during 1960-2002, obtained 

from (a) ERA40, (b) the T42 LBM hindcast , and (c) the T42 SWM hindcast. The 

contour interval is 5m. 

Fig.11   Leading EOFs to the winter SLP anomalies over the North Pacific (150°E-90°W, 

20°-90°N) (left) and the North Atlantic (50°W-40°E, 20°-90°N) (right), as represented 

by the regression of the 500 hPa height anomalies on to the leading principal 
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components in each sector. (a), (b) ERA40, (c), (d) LBM hindcast, and (e), (f) SWM 

hindcast. The contour interval is 10 m, with the zero line denoted by thin contour. The 

fractional variance of the respective EOF1 is also indicated at the top-right of each panel.  

Fig. 12   (a) The PC time series of the leading EOFs over the North Pacific shown in Fig. 

11a, c. The solid (dashed) line indicates the observed (LBM hindcast) time series. (b) 

Same as (a) but for the leading EOFs over the North Atlantic shown in Fig. 11b, d. The 

correlation coefficients between the observed and hindcast time series are also shown at 

the top-right. 

Fig.13   (a), (b) Same as Fig. 11c, d but for the regression of the hindcast response forced 

only by the diabatic heating anomalies. (c), (d) Same as (a), (b) but for the hindcast with 

zonally uniform basic state. The contour interval is 3 m. 

Fig.14  (a), (b) Same as Fig. 11c, d but for the regression of the vertically averaged 

heating. (c), (d) Same as (a), (b) but for the heating averaged in the lower troposphere 

( 0.8σ ≥ ). The contour interval is 0.2 K day-1. The zero contours have been omitted and 

negative contours dashed. 

Table 1 Parameters used in the barotropic model with different horizontal resolution. 

The definitions of the RMS error ε  and norm ratio λ  are respectively given in Eqs. 

(11) and (12). 
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Table 1  Parameters used in the barotropic model with different horizontal resolution. 

The definitions of the RMS error ε  and norm ratio λ  are respectively given in Eqs. 

(11) and (12). 

 

 

 T21 T42 T63 T106
Diffusion  

Order 4th 4th 4th 4th
Coefficient ( ) 16 410  m /s 8.93 1.75 0.47 0.18
Damping time (hour) 24 8 6 2

Best value of γ 7 40 127 350
∆t for time integration (min) 60 30 20 12
n for ε=0.1 12 54 129 329
n for ε=0.01 40 138 275 660
λ for ε=0.1  0.067 0.062 0.031 0.032
λ for ε=0.01 0.009 0.009 0.005 0.003
Degrees of freedom 483 1848 4095 11448
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Fig.1 RMS error ratio (ε ) of the AIM solution as a function of the iteration step n. All 

the errors are computed by the T21 barotropic model with different values of γ . The 

fastest convergence is obtained with 7γ = , as indicated by the thick curve . 
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Fig.2 Eigenvalue spectrum of  in the T21 barotropic model with (a) *M 0γ =  (equal 

to ), (b) M 1γ = , (c) 10γ = , and (d) 100γ = . iσ  and rσ  are the imaginary and real 

parts, respectively. A unit circle is drawn for reference. 
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Fig.3 Same as Fig.1 but for ε  calculated from three different methods: AIM with 

7γ = , time integration, and conjugate gradient method. The 10% and 1% error levels 

are indicated by dashed lines. Note that three methods employ the same first guess. 
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Fig.4 Steady streamfunction response to the equatorial divergent forcing (denoted by 

shading) obtained from the T21 barotropic model.  The contour interval is 1×106 m2 s-1 

while the negative contours are dashed. (a) True solution by the matrix inversion, (b) 

the AIM solution at n=1 with 7γ = , (c) the CG solution at n=292, and (d) the AIM 

solution at n=40. The RMS errors for (c) and (d) are 1%. 
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Fig.5 Same as Fig.1 but for ε  calculated with different diffusion coefficients, varying 

from 12hr to 2dy damping timescale for the smallest wave. The best value of γ  

employed in each computation is also indicated.  
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Fig.6 Number of iteration steps required for the convergence 0.01ε ≤  in the 

barotropic model with different horizontal resolution. Dashed lines with circle, triangle, 

and cross show the solutions obtained from AIM, CG, and time integration, respectively, 

all employing the diffusion coefficient common to the T21 resolution. Solid lines are 

the solutions with the diffusion dependent on the resolution (weaker in higher resolution, 

following Table 1). The gray line indicates the number of degrees of freedom.  
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Fig.7 Differential norm ratio, λ , against the companion RMS error ratio, ε , for the 

AIM solutions in the barotropic model. The values are plotted up to n=70 for T21, 

n=300 for T42, n=400 for T63, and n=800 for T106, respectively. The diffusion 

timescale for each resolution follows Table 1. 
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Fig.8  Anomalies of the 850 hPa wind (vector, plotted for the magnitude greater than 1 

m s-1) and 300 hPa geopotential height (contour, interval of 40 m without zero contours) 

(a) observed during winter 1997/98, and (b), (c) obtained as a steady response to the 

observationally estimated forcing. The responses are calculated with T42 20-level LBM, 

with the 3D basic state in (b) and the zonally uniform basic state in (c). The 

supplemental thin contour of 20 m is also indicated in (b) and (c). 
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Fig.9  (a) Observed and (b) calculated SLP anomalies during winter 1997/98, the latter 

associated with the steady response shown in Fig. 8b. The contour interval is 2 hPa, the 

zero contours omitted. (c), (d) Same as (a), (b) but for the temperature (contour, 1K 

interval) and height (shading) anomalies along 50°N. Topography resolved in LBM is 

presented by the black rectangles in (d). 
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Fig.10  Standard deviations of the 500 hPa height anomalies during 1960-2002, obtained 

from (a) ERA40, (b) the T42 LBM hindcast, and (c) T42 SWM hindcast. The contour 

interval is 5m. 
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Fig.11  Leading EOFs to the winter SLP anomalies over the North Pacific (150°E-90°W, 

20°-90°N) (left) and the North Atlantic (50°W-40°E, 20°-90°N) (right), as represented 

by the regression of the 500 hPa height anomalies on to the leading principal 

components in each sector. (a),  (b) ERA40, (c), (d) LBM hindcast, and (e), (f) SWM 

hindcast. The contour interval is 10 m, with the zero line denoted by thin contour. The 

fractional variance of the respective EOF1 is also indicated at the top-right of each panel.  
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Fig.12  (a) The PC time series of the leading EOFs over the North Pacific shown in Fig. 

11a, c. The solid (dashed) line indicates the observed (LBM hindcast) time series. (b) 

Same as (a) but for the leading EOFs over the North Atlantic shown in Fig. 11b, d. The 

correlation coefficients between the observed and hindcast time series are also shown at 

the top-right. 
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Fig.13  (a), (b) Same as Fig. 11c, d but for the regression of the hindcast response forced 

only by the diabatic heating anomalies. (c), (d) Same as (a), (b) but for the hindcast with 

zonally uniform basic state. The contour interval is 3 m. 
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Fig.14  (a), (b) Same as Fig. 11c, d but for the regression of the vertically averaged 

heating. (c), (d) Same as (a), (b) but for the heating averaged in the lower troposphere 

( 0.8σ ≥ ). The contour interval is 0.2 K day-1. The zero contours have been omitted and 

negative contours dashed. 
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