²áµî¤ÎCCSR¥»¥ß¥Ê¡¼ (2006ǯÅÙ)
2006ǯ4·î7Æü(¶â) 15:00 - 17:00
¹õÅÄ ¹ä»Ë
- ¹Ö±éÂêÌÜ: Â絤Âç½Û´Ä¥â¥Ç¥ë¤òÍѤ¤¤¿²ÐÀ±¤Îµ¤¾Ý¤Ë¤ª¤±¤ë¥À¥¹¥È¤ÎÌò³ä¤Î¸¦µæ
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
2006ǯ4·î14Æü(¶â) 13:30 - 15:00
Ãæß· ůÉ× (µ¤¾ÝÄ£µ¤¾Ý¸¦µæ½êÂæÉ÷¸¦µæÉô; ÂèÆ󸦵漼¼¼Ä¹)
- ¹Ö±éÂêÌÜ: TRMM¤Ë¤è¤ë¹ß¿åÎÌ¿äÄê¤Ë¤Ä¤¤¤Æ
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
TRMM¤Ï¡¢Ç®ÂӤι߿åÎ̤òÀºÅ٤褯¿äÄꤹ¤ë¤³¤È¤òÌÜŪ¤Ë97ǯ11·î¤ËÂǤÁ¾å¤²¤é
¤ì¡¢¤¹¤Ç¤Ë£¸Ç¯¤¬·Ð²á¤·¤¿¡£TRMM¤Ë¤Ï¡¢¤½¤ÎÌÜŪ¤Î¤¿¤á¡¢ÆüËܤ¬³«È¯¤·¤¿¹ß±«
¥ì¡¼¥À¡¼PR¤ä¡¢Êƹñ¤¬³«È¯¤·¤¿¥Þ¥¤¥¯¥íÇÈÊü¼Í·×TMI¤¬ÅëºÜ¤µ¤ì¤Æ¤¤¤ë¡£º£²ó
¤Ï¤³¤ì¤é¤Î¬´ï¤Î¬Ä긶Íý¤äÆÃĹ¡¢ÆÀ¤é¤ì¤Æ¤¤¤ë¥Ç¡¼¥¿¤ÎÆÃÀ¤Ê¤É¤Ë¤Ä¤¤¤ÆÊó
¹ð¤¹¤ë¡£Æäˡ¢¥Ð¡¼¥¸¥ç¥ó£µ¤Î¥Ç¡¼¥¿¤Ç¤Ï¡¢TMI¤ÏÀõ¤¤ÂÐή¤ËÂФ·¤Æ¤ÏPR ¤è¤ê
²á¾®É¾²Á¡¢¿¼¤¤ÂÐή¤ËÂФ·¤Æ²áÂçɾ²Á¤È¤Ê¤Ã¤Æ¤¤¤¿¡£¤³¤Î¤³¤È¤Ï¡¢¥Þ¥¤¥¯¥íÇÈ
Êü¼Í·×¤Î¥¢¥ë¥´¥ê¥º¥à¤Ë¹ß±«¥·¥¹¥Æ¥à¤Î¥é¥¤¥Õ¥µ¥¤¥¯¥ë¤È´ØÏ¢¤·¤¿¼åÅÀ¤¬¤¢¤ë
²ÄǽÀ¤¬¼¨º¶¤µ¤ì¤ë¡£¥Ð¡¼¥¸¥ç¥ó£¶¤Ç¤Ï¡¢PR¤ÈTMI¤Î¿äÄê¤Îº¹¤¬¤è¤ê¾®¤µ¤¯¤Ê¤Ã
¤Æ¤¤¤ë¤³¤È¤¬¤ï¤«¤Ã¤¿¡£
2006ǯ4·î21Æü(¶â) 13:30 - 15:00
°ðÄÅ Õò (ÅìµþÂç³Øµ¤¸õ¥·¥¹¥Æ¥à¸¦µæ¥»¥ó¥¿¡¼)
- ¹Ö±éÂêÌÜ: GCM¤òÍѤ¤¤¿¥¹¥È¡¼¥à¥È¥é¥Ã¥¯¸¦µæ¤È¤½¤ÎŲ¤ò¾è¤ê±Û¤¨¤ë¤¿¤á¤ÎÄ©Àï ¡ÁÁÐÊý¸þ¥Í¥¹¥Æ¥£¥ó¥°¥·¥¹¥Æ¥à³«È¯¤Ë´Ø¤¹¤ë¸½¾õÊó¹ð¤È¤È¤â¤Ë¡Á
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
»ä¤Î¸¦µæ¤Î¥Ï¥¤¥é¥¤¥È¤Ç¤¢¤ëÆîȾµåÅßµ¨¥¹¥È¡¼¥à¥È¥é¥Ã¥¯¤ÎÅìÀ¾Êк¹¤Î·ÁÀ®Í×
°ø¤Ë¤Ä¤¤¤ÆÀâÌÀ¤¹¤ë¡£·ÁÀ®Í×°ø¤¿¤ê¤¦¤ëÃÏɽÌ̾ò·ï¤È¤·¤Æ¡¢Ç®ÂÓ¡¢Ãæ°ÞÅ٤γ¤
Ì̿岹ʬÉÛ¡¢¥¢¥ó¥Ç¥¹»³Ì®¡¢Æ¥Õ¥ê¥«µÖÎͤòÁª¤ÓÂ絤Âç½Û´Ä¥â¥Ç¥ë¤òÍѤ¤¤Æ¡¢
¤½¤ì¤é¤Î¸ú²Ì¤òÄ´¤Ù¤¿¡£¤½¤Î·ë²Ì¡¢Ç®ÂӤγ¤Ì̿岹ʬÉۤˤè¤Ã¤Æ¡¢¥¤¥ó¥ÉÍΤ«
¤é¥Ë¥å¡¼¥¸¡¼¥é¥ó¥É¤Ë»ê¤ëÄê¾ïÇÈÆ°¤ÎÅÁÇŤ¬¸²Ãø¤Ç¤¢¤ê¡¢¤½¤ì¤Ë¤è¤Ã¤Æ¤Ç¤¤¿
¥Ë¥å¡¼¥¸¡¼¥é¥ó¥ÉÉÕ¶á¤Îʬή¤¬¥¹¥È¡¼¥à¥È¥é¥Ã¥¯Ê¬Éۤ˽ÅÂç¤Ê±Æ¶Á¤òµÚ¤Ü¤¹¤³
¤È¤¬¤ï¤«¤Ã¤¿¡£¤Þ¤¿¡¢²¼ÁؤΥ¹¥È¡¼¥à¥È¥é¥Ã¥¯¤Ë¤Ï¡¢Ãæ°ÞÅÙ³¤ÌÌ¿å²¹¤Î¸ú²Ì¤¬
½ÅÍפǤ¢¤Ã¤¿¡£¥Þ¥À¥¬¥¹¥«¥ëÅç¤ÎÆî¤Ë¹¤¬¤ëÃæ°ÞÅÙ³¤ÌÌ¿å²¹ÆîË̸ûÇÛ¤ÎÂ礤¤
Îΰ褬¡¢¥¹¥È¡¼¥à¥È¥é¥Ã¥¯¤ò¥¤¥ó¥ÉÍΤ˶ɺߤµ¤»¤Æ¤¤¤ë¤³¤È¤¬¼¨º¶¤µ¤ì¤¿¡£»þ
´Ö¤¬µö¤¹¸Â¤ê¡¢¥¹¥È¡¼¥à¥È¥é¥Ã¥¯¸¦µæ¤Î¡ÖŲ¡×¤ò¾è¤ê±Û¤¨¤ë¤¿¤á¤ÎÄ©Àï¤È¤·¤Æ¡¢
¡Ê1¡ËÂ絤³¤Íηë¹ç¸ú²Ì¤È(2)ÁÐÊý¸þ¥Í¥¹¥Æ¥£¥ó¥°¤Ë´Ø¤¹¤ëºÇ¿·¤ÎÊó¹ð¤ò¹Ô¤¦¡£
2006ǯ4·î28Æü(¶â) 13:30 - 15:00
¾Ó ˯ (Åìµþ¹©¶ÈÂç³ØÂç³Ø±¡Áí¹çÍý¹©³Ø¸¦µæ²ÊÁϤ¥¨¥Í¥ë¥®¡¼À칶)
- ¹Ö±éÂêÌÜ: ¥·¥ó¥°¥ëµÚ¤Ó¥Þ¥ë¥Á¡¦¥â¡¼¥á¥ó¥È¹â²òÁüÅÙ°Üή¥¹¥¡¼¥à
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
Ëֱܹé¤Ç¤Ï¡¢¹â²òÁüÅÙÊݸ·¿°Üή·×»»¥¹¥¡¼¥à¤Î¹½ÃۤˤĤ¤¤ÆµÄÏÀ¤¹¤ë¡£
¤Þ¤º¡¢·×»»¥á¥Ã¥·¥å¥»¡¼¥ë¤ÎÀÑʬʿ¶ÑÃͤΤߤò¥â¥Ç¥ëÊÑ¿ô¤È¤¹¤ëPRMË¡¤ò¾Ò²ð¤¹¤ë¡£
PRMË¡¤Ï¡¢¥»¡¼¥ë¶³¦ÃͤòÀÑʬʿ¶ÑÃͤ«¤é·×»»¤·¡¢ÍÍý´Ø¿ô¤òÍѤ¤¡¢ºÆ¹½ÃÛ¤ò¹Ô¤¦¡£
¹¹¤Ë¡¢ÀÑʬʿ¶ÑÃͤ˲䨡¢¶³¦ÃÍ¡¢¤Þ¤¿°ìÈÌŪ¤ËÅÀ¤Ë¤ª¤±¤ëÃͤʤɤâͽÊóÊÑ¿ô¤È¤¹¤ë
CIP-CSL¥¹¥¡¼¥à¤äCIP/Multi-Moment͸ÂÂÎÀÑË¡¤ò¾Ò²ð¤¹¤ë¡£
2006ǯ5·î12Æü(¶â) 13:30 - 15:00
ÌøÀ¥ ÏË (ÅìµþÂç³Øµ¤¸õ¥·¥¹¥Æ¥à¸¦µæ¥»¥ó¥¿¡¼)
- ¹Ö±éÂêÌÜ: ¥Ý¡¼¥é¡¼¥í¥¦¤Î¹½Â¤¤ÈÎϳؤ˴ؤ¹¤ë¿ôÃÍŪ¸¦µæ
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
Åßµ¨¹â°ÞÅ٤γ¤Íξå¤Ë¤Ï¥Ý¡¼¥é¡¼¥í¥¦¤È¸Æ¤Ð¤ì¤ë¿åÊ¿¥¹¥±¡¼¥ë¿ôÉ´km¤Î¾®Ä㵤°µ
¤¬¤·¤Ð¤·¤ÐȯÀ¸¤¹¤ë¡£¤½¤Î±À¥Ñ¥¿¡¼¥ó¤Ï¿Íͤǡ¢¥¹¥Ñ¥¤¥é¥ë¾õ¤Î¤â¤Î¤ä¥³¥ó¥Þ
¾õ¤Î¤â¤Î¡¢¤Þ¤¿¡¢¤½¤ì¤é¤Î¤¤¤º¤ì¤Ç¤â¤Ê¤¤´ñ̯¤Ê·Á¤Î¤â¤Î¤Þ¤Ç´Ñ¬¤µ¤ì¤Æ¤¤¤ë¡£
Ëܸ¦µæ¤Ç¤Ï¥Ý¡¼¥é¡¼¥í¥¦¤Î¿ÍÍÀ¤òÍý²ò¤¹¤ë¤¿¤á¡¢¶Å·ëÇ®¤È´Ä¶¾ì¤Î·¹°µÀ¤ò
¹Íθ¤·¤Æ3¼¡¸µ¤ÎÈóÀÅÎϳإâ¥Ç¥ë¤Ë¤è¤ëÍýÁÛ²½¼Â¸³¤ò¹Ô¤Ê¤Ã¤¿¡£¤½¤Î·ë²Ì¡¢´Ñ
¬¤µ¤ì¤ë·¹°µÀ¤ÎÁ´¤Æ¤ÎÈÏ°ÏÆâ¤Ç¥Ý¡¼¥é¡¼¥í¥¦¤¬È¯Ã£¤·¡¢·¹°µÀ¤¬¼å¤¤»þ¤Ë¤Ï
¥¹¥Ñ¥¤¥é¥ë¾õ¤Î±À¥Ñ¥¿¡¼¥ó¡¢·¹°µÀ¤¬¶¯¤¤»þ¤Ë¤Ï¥³¥ó¥Þ¾õ¤Î±À¥Ñ¥¿¡¼¥ó¤òȼ¤¦
¥Ý¡¼¥é¡¼¥í¥¦¤¬ºÆ¸½¤µ¤ì¤¿¡£È¯É½¤Ç¤Ï¤³¤ì¤é¤Î¹½Â¤¤ÈÎϳؤò¾Ò²ð¤¹¤ë¡£
2006ǯ5·î19Æü(¶â) 13:30 - 15:00
²¬ ¸² (ÅìµþÂç³Øµ¤¸õ¥·¥¹¥Æ¥à¸¦µæ¥»¥ó¥¿¡¼)
- ¹Ö±éÂêÌÜ: µ¤¸õ¥·¥¹¥Æ¥à¤Ë¤ª¤±¤ë³¤Íο¼Áؽ۴ĤÎÌò³ä¤ÎÍý²ò¤Î¤¿¤á¤ÎʪÍý¡¦Êª¼Á½Û´Ä¥â¥Ç¥ê¥ó¥°
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
³¤ÍΤο¼ÁؤˤÏÁ´µå¤ò¤æ¤Ã¤¯¤ê¤È½Û´Ä¤¹¤ë³¤Íο¼Áؽ۴Ĥ¬Â¸ºß¤·¡¢¤½¤Î½Û´Ä¤Ë
¤è¤ëǮ͢Á÷¡¢Êª¼ÁÍ¢Á÷¤ÏÃϵåɽÁؤε¤¸õ¤ò·è¤á¤ë¾å¤Ç¤â½ÅÍפǤ¢¤ë¡£Ëֱܹé¤Ç
¤Ï¡¢ËÌÂçÀ¾Íιâ°ÞÅÙ°è¤Ç¤ÎÄÀ¤ß¹þ¤ß¤òµ¯¸»¤È¤¹¤ëÂçÀ¾Íο¼Áؽ۴ĤˤĤ¤¤Æ¡¢³¤
ÍÎÂç½Û´Ä¥â¥Ç¥ë¤òÍѤ¤¤Æ¹Ô¤Ã¤¿¸¦µæ¤ò¾Ò²ð¤¹¤ë¡£¸½ºß¤Î¤è¤¦¤ÊÂçÀ¾Íο¼Áؽ۴Ä
¤Î·ÁÂÖ¤¬°Ý»ý¤µ¤ì¤ë¤¿¤á¤Ë¤Ï¡¢³¤Ì̤Ǥοå¼ý»Ù¡¢¹â°ÞÅÙÄÀ¤ß¹þ¤ß°èÉÕ¶á¤Ç¤Î³¤
Íαöʬ͢Á÷¤¬½ÅÍפȤʤ뤳¤È¤òÄ´¤Ù¤¿¸¦µæ¤ò¾Ò²ð¤¹¤ë¤È¤È¤â¤Ë¡¢Â絤³¤Íηë¹ç
¥â¥Ç¥ë¤Ë¤ª¤±¤ëÂçÀ¾Íο¼Áؽ۴ĤκƸ½À¤ä¿¶Éñ¤¤¤Ë¤Ä¤¤¤Æ¤âµÄÏÀ¤¹¤ë¡£¹Ö±é¤Î
ºÇ¸å¤Ë¤Ï¡¢ÃºÁǤò¤Ï¤¸¤á¤È¤¹¤ëʪ¼Á½Û´Ä¤Ë¤ª¤±¤ë³¤Íο¼Áؽ۴ĤÎÌò³ä¤òÍý²ò¤¹
¤ë¤¿¤á¡¢ºÇ¶á¼è¤êÁȤ߻Ϥ᤿³¤ÍÎʪ¼Á½Û´Ä¥â¥Ç¥ê¥ó¥°¤Ë¤Ä¤¤¤Æ¾Ò²ð¤¹¤ë¡£
2006ǯ5·î26Æü(¶â) 13:30 - 15:00
Charles Jackson (Institute for Geophysics, The University of Texas, Austin; Professor)
- ¹Ö±éÂêÌÜ: Orbital Forcing of Arctic Climate; Mechanisms of Climate Response and Implications for Continental Glaciation
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
Progress in understanding how terrestrial ice volume is linked to
Earth's orbital configuration has been impeded by the cost of
simulating climate system processes relevant to glaciation over
orbital time scales (10^3-10^5 years). A compromise is usually made to
represent the climate system by models that are averaged over one or
more spatial dimensions or by three-dimensional models that are
limited to simulating particular "snapshots" in time. We take
advantage of the short equilibration time (~10 years) of a climate
model consisting of a three-dimensional atmosphere coupled to a simple
slab ocean to derive the equilibrium climate response to accelerated
variations in Earth's orbital configuration over the past 165,000
years. Prominent decreases in ice melt and increases in snowfall are
simulated during three time intervals near 26, 73, and 117 thousand
years ago (ka) when aphelion was in late spring and obliquity was low.
There were also significant decreases in ice melt and increases in
snowfall near 97 and 142 ka when eccentricity was relatively large,
aphelion was in late spring, and obliquity was high or near its long
term mean. These "glaciation-friendly" time intervals correspond to
prominent and secondary phases of terrestrial ice growth seen within
the marine δ18O record. Both dynamical and thermal effects contribute
to the increases in snowfall during these periods, through increases
in storm activity and the fraction of precipitation falling as
snow. The majority of the mid- to high latitude response to orbital
forcing is organized by the properties of sea ice, through its
influence on radiative feedbacks that nearly double the size of the
orbital forcing as well as its influence on the seasonal evolution of
the latitudinal temperature gradient.
2006ǯ6·î2Æü(¶â) 13:30 - 15:00
»°¹¥ ·úÀµ (µ¤¾ÝÄ£¿ôÃÍͽÊó²Ý)
- ¹Ö±éÂêÌÜ: ¥¢¥ó¥µ¥ó¥Ö¥ë¡¦¥«¥ë¥Þ¥ó¥Õ¥£¥ë¥¿¤Ë¤è¤ë4¼¡¸µÂ絤¥Ç¡¼¥¿Æ±²½
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
¥¢¥ó¥µ¥ó¥Ö¥ë¡¦¥«¥ë¥Þ¥ó¥Õ¥£¥ë¥¿¡ÊEnKF¡Ë¤Ï¡¢¥¢¥ó¥µ¥ó¥Ö¥ëͽÊó¤Ë¤è¤êÆÀ¤é¤ì¤ë
¸íº¹¾ðÊó¤òÍøÍѤ·¤¿¹âÅ٤ʥǡ¼¥¿Æ±²½¼êË¡¤Ç¤¢¤ê¡¢¼ÂÁõ¤¬ÈÑ»¨¤Ç¤Ê¤¤ÅÀ¤ÇÍ¥¤ì¤Æ¤¤¤ë¡£
ËÜȯɽ¤Ç¤Ï¡¢EnKF¤Î´ðËÜŪ¤Ê²òÀâ¤ò¹Ô¤¤¡¢Ãϵ奷¥ß¥å¥ì¡¼¥¿¤ò»È¤Ã¤Æ2004ǯ8·î¤Î
¼ÂºÝ¤Î´Ñ¬¥Ç¡¼¥¿¤òƱ²½¤·¤¿¼Â¸³Îã¤ò¾Ò²ð¤¹¤ë¡£
2006ǯ6·î9Æü(¶â) 13:30 - 15:00
º´Æ£Í§ÆÁ (ÅìµþÂç³Øµ¤¸õ¥·¥¹¥Æ¥à¸¦µæ¥»¥ó¥¿¡¼)
- ¹Ö±éÂêÌÜ: ¥Á¥Ù¥Ã¥È¹â¸¶¤¬¥¢¥¸¥¢¤Î¹ß¿åµ¨Àá¿Ê¹Ô¤ËµÚ¤Ü¤¹±Æ¶Á
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
Îΰ赤¸õ¥â¥Ç¥ë¤òÍѤ¤¤Æ¡¤ËÌÅ쥢¥¸¥¢ÃÏ°è¤Ë¤ª¤±¤ë´¥Á絤¸õ¤Î·ÁÀ®¥á¥«¥Ë¥º¥à
¤òÄ´¤Ù¤¿¡¥¼ÂºÝ¤ÎÃÏ·Á¤òÍѤ¤¤¿¼Â¸³¤È¡¤Å·»³»³Ì®¤ä¥¢¥ë¥¿¥¤»³Ì®¤ò´Þ¤Þ¤Ê¤¤ÃÏ
·Á¤òÍѤ¤¤¿¼Â¸³¤òÈæ³Ó¤·¤¿·ë²Ì¡¤ËÌÅ쥢¥¸¥¢ÃÏ°è¤Ë¤ª¤±¤ë´¥Á絤¸õ¤Î·ÁÀ®¤Ë¤Ï¡¤
±«±¢¸ú²Ì¤¬½ÅÍפǤʤ¤¤È¤¤¤¦¤³¤È¤¬¼¨¤µ¤ì¤¿¡¥Å·»³»³Ì®¤Î¤¢¤ë¡¦¤Ê¤·¤Ë´Ø¤ï¤é
¤º´¥ÁçÃÏ°è¤Î¾å¶õ¤Ç¤ÏÄÀ¹ßή¤¬Âî±Û¤·¤Æ¤ª¤ê¡¤Áí´Ñµ¬ÌϾñÍð¤¬Ä̲᤹¤ëºÝ¤Ë¡¤
¶É½êŪ¤Ë¹ß¿å¤òÍÞÀ©¤·¤Æ¤¤¤¿¡¥É¸¹â¤Î¹â¤¤¥Á¥Ù¥Ã¥È¹â¸¶¤ÏÂÀÍÛÊü¼Í¤Ë¤è¤ê¶¯¤¯
²ÃÇ®¤µ¤ì¡¤Å쥢¥¸¥¢¤Ë¤ª¤±¤ëÂ絤½Û´Ä¤Ë¶¯¤¯±Æ¶Á¤òµÚ¤Ü¤·¤Æ¤¤¤ë¤È¹Í¤¨¤é¤ì¤ë¡¥
°ìÏ¢¤Î´¶Åټ¸³¤Î·ë²Ì¡¤¥Á¥Ù¥Ã¥È¹â¸¶¤ÎǮŪ¤Ê±Æ¶Á¤Ë¤è¤ê¡¤ËÌÅ쥢¥¸¥¢¤Î´¥Áç
ÃÏ°è¾å¶õ¤ËÄÀ¹ßή¤¬·ÁÀ®¤µ¤ì¡¤¶É½êŪ¤Ë¹ß¿å¤òÍÞÀ©¤·¤Æ¤¤¤ë¤³¤È¤¬Ê¬¤«¤Ã¤¿¡¥
ËÌȾµå¤Î½Õ¤«¤é½é²Æ¤Ë¤«¤±¤Æ¡¤°¡Ç®ÂÓ¥¸¥§¥Ã¥È¤È¥Á¥Ù¥Ã¥È¹â¸¶¤È¤Î°ÌÃÖ´Ø·¸
¤ÏÂ礤¯ÊѲ½¤¹¤ë¤¿¤á¡¤¥Á¥Ù¥Ã¥È¹â¸¶¾å¤ÎÂ絤²ÃÇ®¤Ë¤è¤ëÇ®¸»±þÅúÆÃÀ¤Ïµ¨Àá
ÊѲ½¤¹¤ë²ÄǽÀ¤¬¤¢¤ë¡¥¤³¤ì¤é¤ò¤â¤È¤Ë¡¤¥¢¥¸¥¢¤Î¹ß¿åµ¨Àá¿Ê¹Ô¤Ë¤Ä¤¤¤ÆºÆ¹Í
¤¹¤ë¡¥
2006ǯ6·î12Æü(·î) 13:30 - 15:00
º´Ìø Ë®ÃË (¥¢¥ê¥¾¥ÊÂç³Ø)
- ¹Ö±éÂêÌÜ: Effects of a Large Convective Storm on Saturn's Equatorial Wind
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
The question of what shapes the structure of the atmospheric jets and
how they are maintained on the giant planets remains one of the most
important unsolved problems in planetary atmospheric fluid dynamics.
After a general introduction to the so-called "Jets Problem," I will
present my recent work on Saturn's equatorial jet dynamics. Voyager
observations of Saturn in 1981 identified multiple east-west jets at
the cloud-level, including a particularly broad and fast 470 m/s
eastward jet at the equator. However, observations between 1994-2004
consistently indicated that the equatorial jet now blows at ~275
m/s. The finding is surprising because such a change would imply a
significant angular momentum loss from the equatorial jet. It has
been hypothesized that a large equatorial convective storm observed in
1990 caused the wind deceleration. I will discuss our full 3D GCM
simulation results that show whether large-scale atmospheric waves and
turbulent mixing triggered by the storm can cause a slowdown like that
observed.
2006ǯ6·î16Æü(¶â) 15:00 - 17:00
²ÃÆ£ µ±Ç· (µ¤¾Ý¸¦µæ½êͽÊ󸦵æÉô)
- ¹Ö±éÂêÌÜ: ¥á¥½ÂÐή·Ï¤Î´ðÁùֺÂ
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
½¸Ãæ¹ë±«¤Î¿¤¯¤ÏÀþ¾õ¹ß¿åÂӤˤè¤ê¤â¤¿¤é¤µ¤ì¤ë¡£¤½¤ÎÀþ¾õ¹ß¿åÂÓ¤ÏÊ£¿ô¤Î
ÀÑÍð±À¤Ë¤è¤êÁÈ¿¥²½¤·¤¿¥á¥½ÂÐή·Ï¤¬Ê£¿ôʤ֤³¤È¤Ç·Áºî¤é¤ì¤Æ¤¤¤ë¡£¤Þ¤¿¡¤
ÀÑÍð±À¤Ë¤Ï¼÷Ì¿¤¬¤¢¤ë¤Î¤Ç¥á¥½ÂÐή·Ï¤ÎÉ÷¾å¦¤ÇÀÑÍð±À¤¬¼¡¡¹¤ÈȯÀ¸¤·¤Ê¤±¤ì
¤Ð¡Ê¤³¤Î¤³¤È¤ò¥Ð¥Ã¥¯¥Ó¥ë¥Ç¥£¥ó¥°¤È¸Æ¤Ö¡Ë¡¤¥á¥½ÂÐή·Ï¤Ï°Ý»ý¤Ç¤¤Ê¤¤¡£¤·
¤¿¤¬¤Ã¤Æ¡¤½¸Ãæ¹ë±«¤ÎȯÀ¸¤òÍý²ò¤¹¤ë¤¿¤á¤Ë¤Ï¤É¤Î¤è¤¦¤Ê´Ä¶¾ì¤ÇÀÑÍð±À¤¬·«
¤êÊÖ¤·È¯À¸¤Ç¤¤ë¤«¤òÀ褺ÇÄ°®¤¹¤ëɬÍפ¬¤¢¤ë¡£
¤³¤Î´ðÁùֺ¤Ǥϡ¤¤½¤Î¤è¤¦¤ÊÀÑÍð±À¤ÎȯÀ¸¤òÍý²ò¤¹¤ë¤¿¤á¤Ë¡¤²¹°Ì¡¦ÁêÅö
²¹°Ì¤ÎʪÍýŪ¤Ê°ÕÌ£¤«¤é¼¾½áÂ絤¤ÎÉÔ°ÂÄê¡ÊÀøºßÉÔ°ÂÄê¡¢ÂÐήÉÔ°ÂÄê¡Ë¤òÀâÌÀ
¤·¡¤´Ä¶¾ì¤Ë¤è¤Ã¤Æ¤É¤Î¤è¤¦¤ËÀÑÍð±À¤Îȯ㤬º¸±¦¤µ¤ì¤ë¤«¤òÇß±«´ü¤òÎã¤È¤·
¤Æ²òÀ⤹¤ë¡£
2006ǯ6·î30Æü(¶â) 13:30 - 15:00
ã·Æ£ ¾°»Ò (ÅìµþÂç³Øµ¤¸õ¥·¥¹¥Æ¥à¸¦µæ¥»¥ó¥¿¡¼)
- ¹Ö±éÂêÌÜ: ±ÒÀ±¤Ë¤è¤ëCO2Á´µå´Ñ¬ ¡ÁGOSAT¥×¥í¥¸¥§¥¯¥È¤Î³µÍפÈCO2´Ñ¬¸íº¹É¾²Á¡Á
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
¶áǯ¡¢Â絤Ãæ¤ÎCO2¤ÎÇ»ÅÙÊÑÆ°¤ò·Ñ³Ū¤Ë¥â¥Ë¥¿¡¼¤¹¤ë¤³¤È¤Î½ÅÍ×À¤¬
¹¤¯Ç§¼±¤µ¤ì¤Æ¤¤¤ë¡£³Æ¹ñ¤ÇCO2¤òÁ´µåµ¬ÌϤǷѳŪ¤«¤Ä¹âÀºÅ٤˷׬
¤¹¤ë¤³¤È¤òÌÜŪ¤È¤·¤¿¿Í¹©±ÒÀ±ÅëºÜ¥»¥ó¥µ¡¼¤ÎÂǤÁ¾å¤²¤¬·×²è¤µ¤ì¤Æ¤ª¤ê¡¢
¤½¤Î¤¦¤Á¤Î1¤Ä¤¬¹ñΩ´Ä¶¸¦µæ½ê¡¢´Ä¶¾Ê¡¢±§Ãè¹Ò¶õ¸¦µæ³«È¯µ¡¹½¤¬¶¦Æ±
¤Ç³«È¯¤ò¿Ê¤á¤Æ¤¤¤ë2008ǯÂǤÁ¾å¤²Í½Äê¤Î²¹¼¼¸ú²Ì¥¬¥¹´Ñ¬µ»½Ñ±ÒÀ±
GOSAT (Greenhouse gases Observing SATel-lite)¤Ç¤¢¤ë¡£GOSAT¤Î¤è¤¦¤Ê
±ÒÀ±¥»¥ó¥µ¡¼¤Ë¤è¤ëCO2Á´µå¥Ç¡¼¥¿¤òÍѤ¤¤ë¤³¤È¤Ç¡¢CO2¤ÎȯÀ¸¸»/µÛ¼ý¸»
¿äÄê¤ÎÀºÅÙ¤¬¸þ¾å¤¹¤ë¤³¤È¤¬Â¿¤¤¤Ë´üÂÔ¤µ¤ì¤ë¡£
Ëֱܹé¤Ç¤Ï¡¢ÍÍ¡¹¤Ê±ÒÀ±¥Ç¡¼¥¿¤òÍѤ¤¤¿CO2Ç»ÅÙ¤ÎƳ½Ð¼êË¡¤Ë¤Ä¤¤¤Æ¤Î
¥ì¥Ó¥å¡¼¤ò¹Ô¤Ã¤¿¾å¤Ç¡¢GOSAT¥×¥í¥¸¥§¥¯¥È¤Î³µÍפò¾Ò²ð¤·¡¢JAXA¡¦CCSR¤¬
ôÅö¤·¤Æ¤¤¤ëGOSAT¤ÎÇ®ÀÖ³°FTS¥Ç¡¼¥¿¤òÍѤ¤¤¿CO2Ç»ÅÙƳ½Ð¤Î¥¢¥ë¥´
¥ê¥º¥à¤Ë¤Ä¤¤¤Æ¸¡Æ¤¤·¤¿·ë²Ì¤Ê¤É¤òÊó¹ð¤¹¤ë¡£
2006ǯ7·î4Æü(²Ð) 13:30 - 15:00
Yaocun Zhang (ÅìµþÂç³Øµ¤¸õ¥·¥¹¥Æ¥à¸¦µæ¥»¥ó¥¿¡¼; µÒ°÷¶µ¼ø)
- ¹Ö±éÂêÌÜ: Seasonal evolution of the upper-tropospheric westerly jet core over East Asia and its association with East Asian climate
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
In the upper troposphere and lower stratosphere, there exists a
narrow and strong westerly wind belt with larger horizontal and vertical
wind shears over the East Asian subtropical region, which is referred to the
East Asia Subtropical Westerly Jet (EAWJ). Evident changes of the EAWJ in
the strength and location occur during its seasonal evolution. The location
change of the westerly jet core at upper troposphere in June and July is
investigated by using the NCEP/NCAR reanalysis data. The results show that
the location of the westerly jet core changes rapidly from 140_E to 90_E
during 35th-39th pentads, which corresponds to the plum rain period over
East Asia. After that, the jet core occurs mainly over the Tibetan Plateau
and Iranian Plateau, showing a bimodality pattern. The location change of
the jet core is actually the relative intensity change of the different
westerly jet centers. The meridional temperature contrast in the troposphere
is associated with the rapid location change of the jet core. The diabatic
heating changes are the primary factor determining the seasonal evolution of
the westerly jet core over East Asia.
2006ǯ7·î7Æü(¶â) 13:30 - 15:00
<Çî»ÎÏÀʸÃæ´Öȯɽ> °æ¸ý µýÆ» (ÅìµþÂç³Øµ¤¸õ¥·¥¹¥Æ¥à¸¦µæ¥»¥ó¥¿¡¼)
- ¹Ö±éÂêÌÜ: ÎΰèÈóÀÅÎϳإâ¥Ç¥ë¤ò¥Ù¡¼¥¹¤È¤·¤¿±ÀÈùʪÍý·×»»²áÄø¤Ë´Ø¤¹¤ë¸¦µæ
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
2006ǯ7·î14Æü(¶â) 13:30 - 15:00
<Çî»ÎÏÀʸÃæ´Öȯɽ> ÅÏîµ ±Ñ»Ì (ÅìµþÂç³Øµ¤¸õ¥·¥¹¥Æ¥à¸¦µæ¥»¥ó¥¿¡¼)
- ¹Ö±éÂêÌÜ: Recent sea ice retreat and its relationship with wind stress variations
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
1980ǯÂå¸åȾ°Ê¹ß¡¢Ë̶˳¤¤Î³¤É¹Î̤¬µÞ·ã¤Ë¸º¾¯¤·¤Æ¤¤¤ë¤³¤È¤¬
´Ñ¬¤ä¿ôÃÍ¥·¥ß¥å¥ì¡¼¥·¥ç¥ó¤Î·ë²Ì¤«¤éÌÀ¤é¤«¤Ë¤Ê¤Ã¤Æ¤ª¤ê¡¢Â¿¤¯¤Î
¸¦µæ¤¬Ë̶˿¶Æ°¤È¤Î´Ø·¸¤ò»ØŦ¤·¤Æ¤¤¤ë¡£¤·¤«¤·¡¢ÆäËË̶˳¤¤Î
ÂÀÊ¿ÍΦ¤Ç³¤É¹±ï¤Î¸åÂबÃø¤·¤¤2000ǯ°Ê¹ß¤ÏË̶˿¶Æ°»Ø¿ô¤¬
ÉéÊк¹¤ò¼¨¤·¤Æ¤ª¤ê¡¢³¤É¹ÊÑÆ°¤ÈË̶˿¶Æ°¤Ïɬ¤º¤·¤â£±ÂУ±¤Ë¤ÏÂбþ
¤·¤Æ¤¤¤Ê¤¤¡£¤³¤ÎÍ×°ø¤È¤·¤ÆËܸ¦µæ¤Ç¤Ï°Ê²¼¤Î²ÄǽÀ¤ËÃåÌܤ·¤¿¡£
¡Â絤¾ìÊÑÆ°¤ËÂФ·¤Æ³¤É¹¤Î±þÅú¤Ï¥é¥°¤ò»ý¤Ä
¢Ë̶˿¶Æ°¤ÏË̶˰è¤ÎÂ絤¾ìÊÑÆ°¤Î¤¹¤Ù¤Æ¤òÀâÌÀ¤¹¤ë¤â¤Î¤Ç¤Ï¤Ê¤¤
£³¤ÍÎÀ®Áع½Â¤¤ÎÊѲ½¤¬³¤É¹ÊÑÆ°¤Ë´óÍ¿¤·¤Æ¤¤¤ë
¤³¤ì¤é¤ÎÂÅÅöÀ¤ò¸¡¾Ú¤¹¤ë¤¿¤á¤Ë³¤É¹³¤Íηë¹ç¥â¥Ç¥ëIcedCOCO¤Ë
NCEP/NCARºÆ²òÀϥǡ¼¥¿¤ÎÂ絤¾ì¤òÍ¿¤¨¤ë¼Â¸³¤ò¹Ô¤Ã¤¿¡£
2006ǯ07·î28Æü(¶â) 13:30 - 15:00
Sachchida Nand Tripathi (ÅìµþÂç³Øµ¤¸õ¥·¥¹¥Æ¥à¸¦µæ¥»¥ó¥¿¡¼; µÒ°÷½õ¶µ¼ø)
- ¹Ö±éÂêÌÜ: Aerosol Nucleation in Atmosphere
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
Various in-situ measurements show evidence of new particle formation over
a wide range of latitude in the middle to upper troposphere and lower
stratosphere. However the exact mechanism of new particle formation is
still uncertain. Using a combination of satellite derived brightness
temperature, air parcel backward trajectory information, in-situ
measurements of aerosol and precursor gases and an aerosol microphysical
model driven by parameterized ion induced nucleation (IIN), we investigate
the mechanism responsible for, and factors leading to, new particle
formation in the middle to upper troposphere during the Tropospheric Ozone
Production about Spring Equinox (TOPSE) experiment. A 5 dimensional
(temperature, relative humidity, sulphuric concentration, loss of
sulphuric to particles, and ion source rate) parameterization of IIN that
covers the complete range of conditions relevant to the lower atmosphere
has been developed and fed into the microphysical model. The
parameterization is based on a steady state version of the kinetic aerosol
model that uses experimentally measured thermodynamics for the ion
clusters. Model results show that the number concentrations of ultrafine
particles of diameters 3 to 4 nm (N3-4nm) and 3 to 8 nm (N3-8nm) are
consistent with in-situ measurements indicating that new particle
formation likely occurred by ion induced nucleation a day prior to the
time of measurement. A reduction in pre-existing aerosol surface area in a
region of cloud outflow probably triggered particle nucleation. These
studies indicate that, at typical middle to upper troposphere conditions,
ion mechanism is likely an important source of ultrafine particles and
these newly formed particles can grow to act as cloud condensation nuclei
(CCN).
References
Kanawade, V. and S. N. Tripathi, Evidence for the role of ion-induced
particle formation during an atmospheric nucleation event observed in
TOPSE, Journal of Geophysical Research, Vol.111, D02209, 2006,
doi:1029/2005JD006366.
Modgil, M. S., Sanjeev Kumar, S. N. Tripathi, and E. R. Lovejoy, A
parameterization of ion induced nucleation of sulphuric acid and water for
atmospheric conditions, Journal of Geophysical Research, Vol.110, No.D19,
D19205, 2005, doi:10.1029/2004JD005475.
2006ǯ8·î4Æü(¶â) 14:30 - 16:00
ÀÖÁÄÉã½Ó°ì (¥¢¥é¥¹¥«Âç³Ø; ÃϵåʪÍý¸¦µæ½ê½êĹ)
- ¹Ö±éÂêÌÜ: Climate change in the Arctic
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
The most prominent climate change is in progress in the Arctic, at
least during the last hundred years. The change is manifested by a
large increase in temperature during the last half of the last
century, shrinking sea ice in the Arctic Ocean, receding glaciers,
thawing permafrost, etc. In this talk, all these warming phenomena are
examined to see if we can prove they are due to the greenhouse
effect. For example, the International Arctic Research Center (IARC)
asked the IPCC Arctic group to examine the geographic distribution of
the warming caused by the greenhouse effect on the basis of results
from 14 GCM groups. None of them could reproduce the continental
arctic warming, the most prominent warming is the world during the
last half of the last century. Further, this continental arctic
warming has ceased during the last decade or so, although greenhouse
emissions have been increasing rapidly during that time. Obviously,
natural changes such as the multi-decadal oscillations, are an
important factor in climate change in the Arctic. Characteristics of
the multi-decadal oscillations are described. At IARC, our effort is
to distinguish between natural and manmade changes.
2006ǯ8·î25Æü(¶â) 16:00 - 17:30
¿ù»³ ¾»¹ (MIT)
- ¹Ö±éÂêÌÜ: ¥Þ¥Ã¥Ç¥ó¡¦¥¸¥å¥ê¥¢¥ó¿¶Æ°¤Ë¤ª¤±¤ë¼«Í³Â絤¿å¾øµ¤¤ÎÈóÀþ·Á°Üή¤È±À¡¦¾øȯ¥Õ¥£¡¼¥É¥Ð¥Ã¥¯ (Nonlinear Advection of Tropospheric Humidity and Cloud and Evaporation Feedbacks in the Madden-Julian Oscillation)
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
Despite active research on the Madden-Julian Oscillation (MJO), general
circulation models (GCMs) continue to suffer from poor simulations of
this tropical intraseasonal variability, and the theory on the MJO
remains elusive. To assist model development and deepen our understanding,
we develop a simple new model of the MJO, using the Quasiequilibrium
Tropical Circulation Model of Neelin and Zeng (2000). The MJO-like
disturbance develops as a single-column instability (or slow weak-
temperature-gradient moisture wave) because of cloud-radiative and
surface flux feedbacks, a mechanism identified by Fuchs and Raymond (2002)
and Sobel and Gildor (2003). Two processes contribute to the eastward
movement: Nonlinear advection of the tropospheric humidity to the west,
and convergence-induced moistening to the east. The key to the model
disturbance is the interplay between tropospheric humidity and
precipitation, moisture-convection feedback. The humidity field
propagates eastward by advection and convergence-induced moistening;
so does the precipitation field. This study points to possible research
areas on GCM parameterizations:
1) the effect of tropospheric humidity on moist convection;
2) the impact of downdraft-enhanced gustiness on surface heat flux; and
3) relationship between precipitation and cloud-radiative forcing.
(This talk is based on the oral presentation at the AGU Joint Session 2006.)
2006ǯ9·î22Æü(¶â) 13:30 - 15:00
´äÈø ¹Ò´õ (ÅìµþÂç³Øµ¤¸õ¥·¥¹¥Æ¥à¸¦µæ¥»¥ó¥¿¡¼)
- ¹Ö±éÂêÌÜ: ËÌÅ쥢¥¸¥¢¤Ë¤ª¤±¤ë²Æµ¨¹ß¿åÎ̤ηÐǯÊѲ½¤È¥æ¡¼¥é¥·¥¢ÂçΦ¾å¤Î¥í¥¹¥Ó¡¼ÇÈ
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
¥â¥ó¥´¥ë¤«¤éÆâ¥â¥ó¥´¥ë¤Ë¤ï¤¿¤ëËÌÅ쥢¥¸¥¢°è¤Ï¡¢²¹ÃȲ½¡¦º½Çù²½¡¢¶áǯ¤Ë¤ª
¤¤¤Æ¤Ï´³ò±¡¦²«º½¸½¾Ý¤ÎÁý²Ã¤Ê¤É¸·¤·¤¤µ¤¸õÊѲ½¤Ë¤µ¤é¤µ¤ì¤Æ¤¤¤ë¡£¤³¤ÎÃÏ°è
¤Ë¤ª¤¤¤Æǯ´Ö¹ß¿åÎ̤ÎÂçȾ¤òÀê¤á¤ë¡¢²Æµ¨¹ß¿åÎ̤ηÐǯÊѲ½¤ËÂФ·¼çÀ®Ê¬
(EOF)²òÀϤò¹Ô¤Ã¤¿·ë²Ì¡¢¥â¥ó¥´¥ëËÌÉô¤Î¹ñ¶¤ò¶¤Ë¥â¥ó¥´¥ë¤È¥·¥Ù¥ê¥¢¤ÇÆî
Ë̤˿¶Æ°¤¹¤ë¥Ñ¥¿¡¼¥ó¤¬Âè°ì¥â¡¼¥É¤È¤·¤Æ¸½¤ì¡¢¤³¤ÎÊÑÆ°¥â¡¼¥É¤ÏËÌÅ쥢¥¸¥¢
¤Ë¤ª¤±¤ë²Æµ¨¹ß¿åÎ̤˶¯¤¤±Æ¶Á¤ò»ý¤Ä¤³¤È¤¬Ê¬¤«¤Ã¤¿¡£¤³¤Î¥â¡¼¥É¤Ë¤Ï¥æ¡¼¥é
¥·¥¢ÂçΦ¾å¤òÀ¾¤«¤éÅÁÇŤ·¤Æ¤¯¤ë¥í¥¹¥Ó¡¼ÇȤ¬¶¯¤¯´ØÍ¿¤·¤Æ¤ª¤ê¡¢¤½¤ì¤¬¥·¥Ù
¥ê¥¢¤ÈËÌÅ쥢¥¸¥¢¾å¶õ¤ËµÕÉä¹æ¤ÎÆîËÌÉ÷Êк¹¤ò»ý¤Ä¤È¤Î¾ÃÏ°è´Ö¤Ë»Ò¸áÌ̽۴Ä
¤¬·ÁÀ®¤µ¤ì¡¢¤½¤ì¤Ëȼ¤¦±ôľήÊк¹¤¬¹ß¿å¤òÂ¥¿Ê¡¦ÍÞÀ©¤¹¤ë¤³¤È¤Ë¤è¤ê¡¢²Æµ¨
¹ß¿åÎ̤ÎÆîËÌ¿¶Æ°¥Ñ¥¿¡¼¥ó¤¬·ÁÀ®¤µ¤ì¤ë¤³¤È¤¬¼¨º¶¤µ¤ì¤¿¡£¤³¤³¤Ç¸½¤ì¤¿²Æµ¨
¥æ¡¼¥é¥·¥¢ÂçΦ¾å¤Î¥í¥¹¥Ó¡¼ÇȤÎÇÈÎó¤Ï¡¢¤³¤ì¤Þ¤Ç°¡Ç®ÂÓ¥¸¥§¥Ã¥È¾å¤ÎÇÈÎó¥Ñ
¥¿¡¼¥ó¡¢¥·¥Ù¥ê¥¢¾å¶õ¤ÎÇÈÎó¥Ñ¥¿¡¼¥ó¤È¤·¤ÆÃΤé¤ì¤Æ¤¤¤ë¤â¤Î¤Ç¤¢¤ê¡¢¤³¤ì¤Þ
¤ÇÊÌ¡¹¤ËµÄÏÀ¤µ¤ì¤Æ¤¤¿¡£È¯É½¤Î¸åȾ¤Ç¤Ï¡¢¤³¤ì¤é¤ÎÇÈÎó¤ËÃíÌܤ·¤¿ºÇ¶á¤Î·ë
²Ì¤ò¼¨¤¹¡£
2006ǯ9·î29Æü(¶â) 13:00 - 14:00
Brian Mapes (Miami University )
- ¹Ö±éÂêÌÜ: Climatological mid-summer dry spells in Florida and Japan - are they linked?
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
The mean seasonal cycle includes a mid-summer (July-August) hot dry
period in both East Asia and the Caribbean region, apparently caused
by incursion of the oceanic high pressure systems centered to the
east. Japan's dry season has been ascribed to an anticyclone (the
Bonin High) in a Rossby wave train on the Asian jet, excited from
southwest Asia. This appears to be just one local maximum on an
elongated ridge, associated with a hemispheric-scale (150 degrees
longitude) subseasonal (but climatological) weakening of the Asian jet
around August 1. The Caribbean high pressure and dry weather
(canicula or veranillo in Spanish) appears to have a different cause:
advection of the oceanic anticyclone by easterlies. A velocity
potential depiction suggests that the anomalous upper convergence over
the Caribbean is accompanied by anomalous divergence over southwest
Asia. Both systems thus appear to have connections to the deserts of
southwest Asia - not the core of the monsoon. Might there be important
(but dry) processes occurring there in mid-summer? A free software for
exploring these issues in standard climate datasets will be shown and
offered for PC, Mac, and Linux.
2006ǯ9·î29Æü(¶â) 14:00 - 15:00
Paquita Zuidema (University of Miami)
- ¹Ö±éÂêÌÜ: The Role of Clouds in Climat
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
Ship-based cloud radar datasets provide views into internal cloud
structure that augment the more available view provided by satellites
and ultimately help us elucidate the role of clouds in climate. Such
datasets can be particularly valuable for convective tropical oceanic
regions that are otherwise sampled primarily by satellite. The
U.S. has sponsored two ship-based campaigns that included a cloud
radar to tropical oceanic regions, one to the eastern tropical Pacific
(EPIC) and another to the Bay of Bengal (JASMINE). Complete radar
attenuation by liquid was rare in both regions. An interesting finding
in the eastern tropical Pacific was the existence of dry air layers at
6-8 km altitude that then modulated further convection. One impact was
the discouragement of small-scale surface-based convection, evident as
a weakening and narrowing of cloud radar reflectivity features. The
other, more novel, observation was that of differential advection
bringing snowing cirrus anvil clouds over a dry layer below. The
cooling rate from the associated sublimation can reach several 10s of
degrees per day over a 100 hPa layer, inferred independently from the
cloud-radar reflectivities and the horizontal wind divergence
calculated from the Doppler velocities of a coincident precipitation
radar. The associated rawindsonde temperature profile shows a
positive-negative-positive temperature anomaly pattern centered on the
sublimating layer. Results from a buoyancy-sorting model suggest that
these temperature anomalies can cause premature detrainment of
updrafts that may actively maintain the anvils.
In contrast to the eastern tropical Pacific, the Bay of Bengal
observations documented a more uniformly moist atmosphere once the
monsoon was underway. Prior to monsoon onset, cirrus clouds were
abundant, apparently advected westward from land-based convection and
precipitation was limited to occasional Cumulus Congestus. Even after
monsoon onset the precipitation efficiency appeared to be lower than
that in the eastern tropical Pacific, with less measured surface
precipitation and more high-altitude cirrus outflow modeled than for
the eastern tropical Pacific. This, along with pronounced wind shear,
helps explain the high cirrus fraction observed for this
region. Monsoonal melting-level cloudiness outflow was also
pronounced, with most of it residing at slightly sub-freezing
temperatures. It is argued that a comparison of these observations to
representative ones from models will improve our understanding of the
cloud processes governing these two regions.
2006ǯ10·î11Æü(¿å) 15:00 - 17:00
¸þ°æ ¿¿ÌÚ»Ò (ÅìµþÂç³Øµ¤¸õ¥·¥¹¥Æ¥à¸¦µæ¥»¥ó¥¿¡¼)
- ¹Ö±éÂêÌÜ: ¿ôÃÍÂç½Û´Ä¥â¥Ç¥ë¤òÍѤ¤¤¿¥¨¥¢¥í¥¾¥ë¤Îµ¤¸õ±Æ¶Á¤Ë´Ø¤¹¤ë¸¦µæ
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
The economic growth due to the industrial revolution may influence the
climate change. In order to estimate the anthropogenic impact on the
climate, we investigated variations of radiation budget. Because
scattering and absorption of solar radiation by gases and aerosol
particles can change the amount of sunlight that reaches the ground,
the analysis of solar radiation at the surface has great importance for
the study of climate change. We would like to understand the relation
between human activity and climate change by investigating the change
of the radiation budget using surface observation data and model
simulations.
In this study, we used the aerosol transport model SPRINTARS [Takemura
et al., 2000, 2002, 2005]. This model is coupled with CCSR/NIES/FRCGC
Atmospheric General Circulation model and considers carbonaceous,
sulfate, mineral dust and sea salt aerosols from various emission
sources. Aerosol particles can influence the radiation budget, not only
directly by scattering and absorbing radiation but also indirectly by
changing the properties of cloud.
Observed data and model simulations show that the anthropogenic
aerosol increase caused a solar radiation decrease in the industrial
regions of Asia where economic is rapidly developing. Furthermore we
analyzed details of change in the dynamical cycle in this region using
model simulation and found that the surface temperature change caused
by aerosol affected clouds and precipitation. The aerosol impact is as
important as greenhouse gases impact. So, we should consider both
effects when estimating the anthropogenic impact on climate.
2006ǯ10·î13Æü(¶â) 15:00 - 16:30
µÈºê Àµ·û (³¤Íθ¦µæ³«È¯µ¡¹½¡¦Ãϵå´Ä¶´Ñ¬¸¦µæ¥»¥ó¥¿¡¼)
- ¹Ö±éÂêÌÜ: On the eastward propagating mechanism of super cloud clusters appearing in the positive-only wave-CISK model
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
There are controversies on the eastward propagating mechanism of super
cloud clusters (SCCs) such as atmospheric response to independent
forcing or atmospheric instability. Here we try to explain the
eastward propagating mechanism of SCCs by considering atmospheric
instability including a positive-only wave-CISK as diabatic
heating. Two models are used; 1) a simple 4-layer model with constant
N and no zonal wind, and 2) a model using the NICAM output. Although
multi-scale horizontal structure is not simulated, slow eastward
propagating disturbances are reproduced. Why/how the eastward
propagating disturbances are selected is discussed.
To observe initiation and development of Madden-Julian Oscillation
(MJO; a similar phenomenon of SCCs) over the Indian Ocean, MISMO
(Mirai Indian Ocean cruise for the Study of the MJO-convection Onset)
project started from October to December 2006. I will introduce this
observational plan briefly.
2006ǯ10·î16Æü(·î) 15:00 - 17:00
°æ¸ý µýÆ» (ÅìµþÂç³Øµ¤¸õ¥·¥¹¥Æ¥à¸¦µæ¥»¥ó¥¿¡¼)
- ¹Ö±éÂêÌÜ: Å쥷¥Ê³¤Îΰè¤òÂоݤȤ·¤¿¥Ó¥óË¡±À²òÁü¥â¥Ç¥ë¤Ë¤è¤ë±ÀÈùʪÍýÆÃÀ¤Ë´Ø¤¹¤ë¿ôÃͼ¸³
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
In this study, a bin-type cloud microphysics model was introduced
into a three-dimensional non -hydrostatic model and carried out
simulations of clouds in an area around the East China Sea region. The
obtained results were compared with observed data from TERRA/MODIS
satellite retrievals. The simulations reproduced the general features
of the horizontal distributions of optical thickness and the effective
particle radius of water clouds derived by the satellite remote
sensing, though the simulations have some problems, for example, the
amount of non- precipitation clouds was underestimated. The
correlations of the CCN concentration with cloud variables, such as
effective radius and optical thickness, were found to be similar to
those of satellite measurements. The radiation scheme was improved to
adjust the bin-type cloud microphysical scheme to treat mode radius of
each hydrometeors directly. By this improvement, the spatial
distribution of effective radius and the change of mean radius of
hydrometeors in the CCN sensitivity tests (the aerosol first-kind
indirect effect) can be reflected in the radiation flux calculation
more explicitly.
2006ǯ11·î10Æü(¶â) 10:30 - 12:00
µÈ¿¹ ÀµÏ (Rutgers University)
- ¹Ö±éÂêÌÜ: ÍÍ¡¹¤ÊÊü¼Í¶¯À©Í×ÁǤËÂФ¹¤ë¥â¥Ç¥ëÂ絤¤ÎÄê¾ï±þÅú¤Ë¤Ä¤¤¤Æ
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
»º¶È³×Ì¿°Ê¹ß¡¢¿Í´Ö³èÆ°¤Î·ë²Ì¤È¤·¤Æ¡¢ÃϵåÂ絤Ãæ¤ÎÈùÎ̵¤ÂÎÀ®Ê¬¤ª¤è¤ÓÈùγ
»Ò¤ÎÎ̤ϵÞ®¤ËÊѲ½¤·¤Æ¤¤¿¡£Æó»À²½ÃºÁǤʤɤΡ¢Â絤Ãæ¤Ç¤è¤¯º®¹ç¤µ¤ì¤¿²¹
¼¼¸ú²Ì¥¬¥¹¤Îµ¤¸õ¤Ø¤Î±Æ¶Á¤Ë¤Ä¤¤¤Æ¤Ï¡¢¤³¤ì¤Þ¤Ç¿¤¯¤Î¸¦µæ¤¬¤Ê¤µ¤ì¤Æ¤¤¿¡£
°ìÊý¡¢Â絤Ãæ¤ËÉԶѼÁ¤Ë¸ºß¤¹¤ë¥¨¥¢¥í¥¾¥ë¤Ê¤É¤Ï¡¢ÃϵåÊ¿¶Ñ¤µ¤ì¤¿Êü¼Í¶¯À©
ÎϤ«¤éñ½ã¤Ë¿ä¬¤µ¤ì¤ë¤è¤ê¤âÂ礤ÊÃÏ°èŪµ¤¸õÊÑÆ°¤ò¤â¤¿¤é¤¹²ÄǽÀ¤¬»ØŦ
¤µ¤ì¤Æ¤¤¤ë¡£¤½¤ì¤Ë¤â´Ø¤ï¤é¤º¡¢¤³¤ì¤é¤ÎÊü¼Í¶¯À©Í×ÁǤ¬¤¿¤é¤¹µ¤¸õÊÑÆ°¤Ë¤Ä
¤¤¤Æ¤ÎÍý²ò¤Ï¡¢¤¤¤Þ¤ÀȯŸÅÓ¾å¤Ç¤¢¤ë¡£Ëܸ¦µæ¤Ç¤Ï¡¢¿·¤·¤¤ÃϵåήÂÎÎϳظ¦µæ
½ê¡ÊNOAA/GFDL¡Ë¤Ç³«È¯¤µ¤ì¤¿ºÇ¿·¤ÎÂ絤Âç½Û´Ä¥â¥Ç¥ë¤òÍѤ¤¡¢ÍÍ¡¹¤ÊÊü¼Í¶¯
À©Í×ÁǤËÂФ¹¤ëÄê¾ï±þÅú¤Ë¤Ä¤¤¤ÆÄ´¤Ù¤¿¡£ÂоݤȤʤëÊü¼Í¶¯À©Í×ÁǤϡ¢Æó»À²½
úÁÇ¡¢ÂÀÍÛÊü¼ÍÄê¿ô¡¢ÂÐή·÷¥ª¥¾¥ó¡¢À®ÁØ·÷¥ª¥¾¥ó¡¢¤¹¤¹¡¢Íµ¡ÃºÁÇ¡¢Î²»À¥¨
¥¢¥í¥¾¥ë¡¢²Ð»³À¥¨¥¢¥í¥¾¥ë¤Ç¤¢¤ë¡£¿ôÃͼ¸³¤ÎÆÃħ¤È¤·¤Æ¤Ï¡¢¤½¤ì¤¾¤ì¤ÎÊü
¼Í¶¯À©Í×ÁǤò¡¢³Æ¼Â¸³¤´¤È¤ËÊÌ¡¹¤ËÊÑÆ°¤µ¤»¤¿¤³¤È¤È¡¢ÃϵåÊ¿¶Ñ¤µ¤ì¤¿Êü¼Í¶¯
À©ÎϤÎÂ礤µ¤¬¤Û¤Ü°ìÄê¤Ë¤Ê¤ë¤è¤¦¤Ë¡¢¥¨¥¢¥í¥¾¥ëÎ̤ʤɤòÄ´À°¤·¤¿¤³¤È¤¬¤¢
¤²¤é¤ì¤ë¡£¤³¤ì¤Þ¤Ç¤Î¸¦µæ¤Ç¤â»ØŦ¤µ¤ì¤Æ¤¤¿¤è¤¦¤Ë¡¢ÃϵåÊ¿¶Ñµ¤²¹¤ÏÃϵåÊ¿
¶Ñ¤ÎÊü¼Í¶¯À©ÎϤÀ¤±¤Ç¤Ê¤¯¡¢¶¯À©Í×ÁǤμïÎà¤ËÈæ³ÓŪÂ礤¯°Í¸¤¹¤ë¤³¤È¤¬ºÆ
¸½¤µ¤ì¤¿¡£Î㤨¤Ð¡¢¤¹¤¹¤ÏÆó»À²½ÃºÁǤËÈæ¤Ù¡¢Ëܼ¸³¤Ç¤ÏÌó£µ£·¡ó¤ÎÃϵ岹ÃÈ
²½¸úΨ¤·¤«»ý¤¿¤Ê¤¤¡£¤Þ¤¿¡¢¤¹¤¹¤äβ»À¥¨¥¢¥í¥¾¥ë¤ÎÇ»ÅÙ¤òÊѲ½¤µ¤»¤¿¼Â¸³¤Ç
¤Ï¡¢ÍÍ¡¹¤Ê¥Õ¥£¡¼¥É¥Ð¥Ã¥¯²áÄø¤Ë¤è¤ê¡¢Å쥢¥¸¥¢¤ËÈæ¤Ù¤ë¤ÈÊü¼Í¶¯À©ÎϤ¬Èæ³Ó
Ū¾®¤µ¤Ê¥¢¥á¥ê¥«ÆâΦÉô¤ËºÇ¤âÂ礤ʲƤβ¹ÅÙÊѲ½¤¬¸«¤é¤ì¤¿¡£¤³¤Î·ë²Ì¤Ï¡¢
Äã¹âÅ٤αÀ¤Ë¤è¤ë¥Õ¥£¡¼¥É¥Ð¥Ã¥¯¤È¹ß¿å²áÄø¤ÎÊѲ½¤Ë¤è¤ë¤³¤È¤¬¼¨¤µ¤ì¤ë¡£¤Þ
¤¿¡¢Äã°ÞÅ٤Ǥϥϥɥ졼½Û´Ä¤ª¤è¤ÓÇ®ÂÓ¼ý«ÂӤˡ¢¶¯À©Í×ÁǤξܺ٤˴ؤï¤é¤º¡¢
µ¬Â§Åª¤Ê±þÅú¤¬¸«¤é¤ì¤¿¡£¤³¤Î·ë²Ì¤Ï¡¢Ê£¿ô¤Î¸Åµ¤¸õ»Øɸ¤¬¼¨¤·¤Æ¤¤¤ë¡¢Ç®ÂÓ
¼ý«ÂӤϤè¤êÂ礤¯²¹ÃȲ½¤·¤¿¡Ê¤Þ¤¿¤Ï¡¢¤è¤ê¾®¤µ¤¯´¨Îä²½¤·¤¿¡ËȾµå¤Ë°ÜÆ°
¤¹¤ë·¹¸þ¤¬¤¢¤ë¡¢¤È¤¤¤¦²ò¼á¤ÈÄêÀŪ¤Ë°ìÃפ¹¤ë¡£¤·¤«¤·¡¢¼ÂºÝ¤Ë¤ÏÆîËÌȾµå
¤Î²¹ÅÙº¹¤è¤ê¤â¡¢ÆîËÌȾµå¤ÎÊü¼Í¶¯À©ÎϤκ¹¤È¤è¤ê¶¯¤¤Áê´Ø¤¬¤¢¤ë¤³¤È¤¬¼¨¤µ
¤ì¤ë¡£ÆîËÌȾµå¤ÎÊü¼Í¶¯À©ÎϤκ¹¤ÎÌ󣶣°¡ó¤Ë¤¢¤¿¤ë¥¨¥Í¥ë¥®¡¼¤¬ÀÖÆ»¤ò¤Ï¤µ
¤ó¤Çȯ㤷¤¿¥Ï¥É¥ì¡¼½Û´Ä°Û¾ï¤Ë¤è¤Ã¤ÆÍ¢Á÷¤µ¤ì¤ë¡£¤Þ¤¿¡¢³ÆȾµå¤Ë¤ª¤±¤ë»Ä
¤ê¤Î¥¨¥Í¥ë¥®¡¼¼ý»Ù¤Ï¡¢±À¤Î¥Õ¥£¡¼¥É¥Ð¥Ã¥¯¤ò·Ð¤ÆÄ´À°¤µ¤ì¤ë¤³¤È¤¬²¾Àâ¤È¤·
¤ÆÆÀ¤é¤ì¤¿¡£
2006ǯ12·î1Æü(¶â) 13:30 - 15:00
¹â¶¶ Æü½ÐÃË (Åìµþ³Ø·ÝÂç³Ø)
- ¹Ö±éÂêÌÜ: ²Æµ¨¤Î¶¯±«È¯¸½¤Ë´Ø¤¹¤ë·ÐǯÊѲ½¤Ë¤Ä¤¤¤Æ ¡½¹ñÆâ¤ÎÃÏ°èÀ¤ÈÅìµþÅÔ¿´°è¤Î¶ÉÃÏÀ¤Î´ÑÅÀ¤«¤é¡½
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
¡¡¶áǯ¡¤ÆüËܳÆÃϤˤª¤±¤ë¹ë±«ºÒ³²¤È¤È¤â¤Ë¡¤ÅìµþÅÔ¿´°è¤Ç¤Ïû»þ´Ö¶¯±«¤Ëȼ¤¦
ÅÔ»Ô·¿¿å³²¤ÎÉÑȯ¤¬»ØŦ¤µ¤ì¤Æ¤¤¤ë¡¥Â¿¤¯¤ÎÃϵ岹ÃȲ½»þͽ¬¥·¥ß¥å¥ì¡¼¥·¥ç¥ó
·ë²Ì¤ÏÆüËÜÉÕ¶á¤Ë¤ª¤±¤ë¶¯±«¤ÎÁý²Ã¤äÇß±«ÌÀ¤±¤ÎÃÙ¤ì¤Ê¤É¤ò»ØŦ¤·¤Æ¤ª¤ê¡¤Â¾Êý¤Ç
ÅԻԤθºß¤âÂÐή±À¤Îȯã¤Ë´óÍ¿¤¹¤ë¤³¤È¤¬¼¨º¶¤µ¤ì¤Æ¤¤¤ë¡¥ËÜÊó¹ð¤Ç¤Ï¡¤²Æµ¨
(6¡Á9·î)¤òÂоݤˡ¤104ǯ´Ö¤ÎÆü¹ß¿åÎÌ»ñÎÁ¤òÍѤ¤¤Æ¡¤¹ñÆâ¤Ë¤ª¤±¤ë¶¯±«¡¦¼å±«
·¹¸þ¤ÎĹ´üÊѲ½¤òÃÏ°èÀ¤È»þÂåÀ¤Î´ÑÅÀ¤«¤é¸¡Æ¤¤¹¤ë¡¥¤½¤Î·ë²Ì¤È¤·¤Æ¡¤ÃÏ°è¤Ë
¤è¤Ã¤Æ°Û¤Ê¤ë¿ô½½Ç¯¥¹¥±¡¼¥ëÊÑÆ°¤Î¸ºß¤È¡¤1970ǯÂå¸åȾ°Ê¹ß¶áǯ¤ÎÊ£¿ôÃÏ°è¤Ë
¤ª¤±¤ë¶¯±«ÉÑȯ»þ´ü¤Î½Å¤Ê¤ê¡¤¤ª¤è¤Ó1970ǯÂå¸åȾ¤ÎÁ°¸å¤Ë¤ª¤±¤ë¶¯±«È¯¸½µ¨Àá¤Î
º¹°Û¤ò»ØŦ¤¹¤ë¡¥¤Þ¤¿¡¤µ¤¾ÝÄ£°Ê³°¤Î»þ´Ö¹ß¿åÎÌ»ñÎÁ¤âÍѤ¤¤¿²òÀϤˤè¤Ã¤Æ¡¤
²Æµ¨¤ÎÅìµþÅÔ¿´°è¤Ë¤ª¤±¤ë¶¯±«¤Îȯ¸½ÉÑÅÙ¤ä·ÐǯÊѲ½·¹¸þ¤Ëǧ¤á¤é¤ì¤ë¶ÉÃÏÀ¤ò
Ä󼨤·¡¤´Ñ¬Ãͤ˴ð¤Å¤¤¤ÆÃϵ岹ÃȲ½¤Î±Æ¶Á¤¢¤ë¤¤¤Ï¼«Á³¤Î¹ß¿åÊѲ½¤òª¤¨¤ë¾å¤Ç¡¤
ÅԻԤˤè¤ë±Æ¶Á¤Îɾ²Á¤¬É¬ÍפȤʤë²ÄǽÀ¤ò»ØŦ¤¹¤ë¡¥
2006ǯ12·î13Æü(¿å) 10:30 - 12:00
¾¾»Þ ̤±ó (ÃÞÇÈÂç³ØÂç³Ø±¡À¸Ì¿´Ä¶²Ê³Ø¸¦µæ²Ê)
- ¹Ö±éÂêÌÜ: ¥Þ¥ë¥Á¥»¥ó¥¿¡¼¥°¥é¥ó¥É¥¢¥ó¥µ¥ó¥Ö¥ë¤Î¹½ÃÛ¤Èɾ²Á ¤ª¤è¤Ó¤½¤ì¤òÍѤ¤¤¿Â絤¸²Ãø¸½¾Ý¤Î²òÀÏ
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
¶áǯ¤Î¥Ç¡¼¥¿ÄÌ¿®µ»½Ñ¤Îȯã¤Ë¤è¤ê¡¢¸½¶È¿ôÃÍͽÊ󥻥󥿡¼¤«¤éÂçÎ̤Υǡ¼¥¿
¤ò¼èÆÀ¤¹¤ë¤³¤È¤¬Íưפˤʤê¤Ä¤Ä¤¢¤ë¡£¤½¤Î¤è¤¦¤Ê¾õ¶·¤ÎÃæ¡¢Matsueda et
al.(2006, SOLA)¤Ï¡¢JMA(µ¤¾ÝÄ£), NCEP(Êƹñ´Ä¶Í½Â¬¥»¥ó¥¿¡¼), CMC(¥«¥Ê¥À
µ¤¾Ý¶É)¤ÎÃæ´ü¥¢¥ó¥µ¥ó¥Ö¥ëͽÊó¥Ç¡¼¥¿¤ò¼ý½¸¤·¡¢¤½¤ì¤é¤ò°ì¤Þ¤È¤Þ¤ê¤Ë¤·¤¿
¡ÖÂ祢¥ó¥µ¥ó¥Ö¥ë¡×¹½ÃÛ¤·¡¢¤³¤ì¤ò¥Þ¥ë¥Á¥»¥ó¥¿¡¼¥°¥é¥ó¥É¥¢¥ó¥µ¥ó¥Ö¥ë
(MCGE)¤È̾¤Å¤±¡¢¤½¤ÎͽÊóÀºÅÙ¤¬Ã±Æȵ¡´Ø¤Î¥¢¥ó¥µ¥ó¥Ö¥ëͽÊó¤è¤ê¤âÍ¥¤ì¤Æ¤¤
¤ë¤³¤È¤ò¼¨¤·¤¿¡£¡¡ËÜȯɽ¤Ç¤Ï¡¢MCGE¤ÎͽÊóÀºÅÙ¤ò·èÄêÏÀŪ¤ª¤è¤Ó³ÎΨÏÀŪ¤Ë
¸¡¾Ú¤·¤¿·ë²Ì¤ò¼¨¤¹¤È¤È¤â¤Ë¡¢¤³¤ì¤é¤Î¥¢¥ó¥µ¥ó¥Ö¥ëͽÊó¥Ç¡¼¥¿¤Ç¤ß¤¿Â絤¸²
Ãø¸½¾Ý¤ÎÎã¤È¤·¤Æ2005ǯ12·î15Æü¤Ë¥¢¥é¥¹¥«¾å¶õ¤ËȯÀ¸¤·¤¿¥Ö¥í¥Ã¥¥ó¥°¤Ë¤Ä
¤¤¤Æ¾Ò²ð¤¹¤ë¡£
WMO¤Î¿ä¿Ê¤¹¤ëTIGGE(THORPEXÁÐÊý¸þÁí¹ç¥¢¥ó¥µ¥ó¥Ö¥ë)¥×¥í¥¸¥§¥¯¥È¤Ë¤è¤ê¡¢
ÍÍ¡¹¤Ê¸½¶Èµ¡´Ø¤Î¥¢¥ó¥µ¥ó¥Ö¥ëͽÊó¥Ç¡¼¥¿¤Î¼ý½¸¡¢ÃßÀѤ¬»Ï¤Þ¤ì¤Ð¡¢¤³¤Î¤è¤¦
¤Ê¼è¤êÁȤߤ¬º£¸å¤Þ¤¹¤Þ¤¹ÃíÌܤµ¤ì¤ë¤è¤¦¤Ë¤Ê¤ë¤À¤í¤¦¡£
2007ǯ1·î24Æü(¿å) 13:30 - 15:00
ËÒÌî½ß°ìϺ (¹ñΩŷʸÂæ)
- ¹Ö±éÂêÌÜ: V-GRAPE ¤È¤½¤Îµ¤¸õ¥â¥Ç¥ë¤Ø¤Î±þÍѲÄǽÀ¤Ë¤Ä¤¤¤Æ
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
²æ¡¹¤Ï¸½ºßÅìµþÂç³Ø¤ÎÊ¿ÌÚ¡¢Íý¸¦¤Î½¿ºê¤é¤È¶¦Æ±¤Ç 1 ¥Á¥Ã¥×ĶÊÂÎó¥×¥í¥»¥Ã
¥µ GRAPE-DR ¤ò³«È¯¤·¤¿¡£ GRAPE-DR ¤Î´ðËÜŪ¤Ê¥¢¡¼¥¥Æ¥¯¥Á¥ã¤Ï¸ÅŵŪ¤Ê
SIMD ĶÊÂÎó¥×¥í¥»¥Ã¥µ¤ò 512 ¥×¥í¥»¥Ã¥µ 1¥Á¥Ã¥×¤Ë½¸ÀѤ·¤¿¤â¤Î¤Ç¤¢¤ë¡£1
¥Á¥Ã¥×¤Ë¿¿ô¤Î¥×¥í¥»¥Ã¥µ¤ò½¸ÀѤ¹¤ë¤¿¤á¤Ë¡¢1¥×¥í¥»¥Ã¥µ¤¢¤¿¤ê¤Î¥á¥â¥ê¤Ï
2KB ÄøÅÙ¤ÈÈó¾ï¤Ë¾®¤µ¤¯¤Ê¤Ã¤Æ¤¤¤ë¡£ GRAPE-DR ¤Ï¸½ºß¡¢ 1 ¥Á¥Ã¥×¤¬¾è¤Ã¤¿
¥Ü¡¼¥É¤¬Í½Äê¤Î¥¯¥í¥Ã¥¯¼þÇÈ¿ô¤ÇÆ°ºî¤·¤Æ¤ª¤ê¡¢Ì©¹ÔÎó±é»»¤äγ»ÒË¡¥·¥ß¥å¥ì¡¼
¥·¥ç¥ó¤Î¤è¤¦¤Ê¥Ç¡¼¥¿Åö¤ê¤Î±é»»¿ô¤¬Â礤¤¥¢¥×¥ê¥±¡¼¥·¥ç¥ó¤Ç¤ÏÈó¾ï¤Ë¹â¤¤
Àǽ¤ò¼Â¸½¤¹¤ë¤³¤È¤¬³Îǧ¤Ç¤¤¿¡£
¤·¤«¤·¡¢¥á¥Ã¥·¥åË¡¤Ç¤ÎήÂη׻»¤Î¤è¤¦¤Ê¡¢¥Ç¡¼¥¿Åö¤ê¤Î±é»»¿ô¤¬Èæ³ÓŪ¾¯¤Ê
¤¤¥¢¥×¥ê¥±¡¼¥·¥ç¥ó¤Ç¤Ï¡¢ GRAPE-DR ¤Ç¤Ï¥Á¥Ã¥×³°¤Î¥á¥â¥ê¤È¤Î¥Ç¡¼¥¿Å¾Á÷®
ÅÙ¤¬¥Ü¥È¥ë¥Í¥Ã¥¯¤Ë¤Ê¤ê¡¢¸úΨ¤Ï¶ËÅÙ¤ËÄ㤯¤Ê¤ë¡£¤³¤ÎÌäÂê¤ò²ò·è¤¹¤ë¤ÈƱ»þ
¤Ë¥·¥¹¥Æ¥à¤ÎÀ½Â¤¥³¥¹¥È¤ò²¼¤²¤ë¤¿¤á¤Ë¡¢²æ¡¹¤Ï V-GRAPE (Versatile GRAPE)
¥¢¡¼¥¥Æ¥¯¥Á¥ã¤òÄó°Æ¤·¤Æ¤¤¤ë¡£ V-GRAPE ¤Ç¤Ï¡¢º®ºÜ DRAM¡¢¤¢¤ë¤¤¤Ï 1-¥È
¥é¥ó¥¸¥¹¥¿ SRAM Åù¤Îµ»½Ñ¤òÍѤ¤¤Æ¡¢ÂçÍÆÎ̤Υá¥â¥ê¤ò¥×¥í¥»¥Ã¥µ¥Á¥Ã¥×¤Ë½¸
ÀѤ¹¤ë¡£
ÂçÍÆÎ̤ȤϤ¤¤¨¡¢¥á¥Ã¥·¥å¥Ç¡¼¥¿Á´ÂΤò³ÊǼ¤¹¤ë¤Û¤É¤ÎÍÆÎ̤Ϥʤ¤¡£¤³¤Î¤è¤¦
¤Ê¥¢¡¼¥¥Æ¥¯¥Á¥ã¤¬µ¤¸õ¥â¥Ç¥ë·×»»¤ËÍÍѤ«¤É¤¦¤«¡¢µÄÏÀ¤·¤¿¤¤¡£
2007ǯ2·î14Æü(¿å) 10:00 - 11:30
Soon-Il An (Yonsei University, Korea)
- ¹Ö±éÂêÌÜ: Interdecadal changes in the nonlinearity of ENSO
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
The long-term tropical Pacific observed data have been analyzed to
describe the interdecadal change in the nonlinearity of ENSO and
possible consequence of this change. Not only general characteristics of
ENSO (i.e., amplitude, period, and so on) but also the nonlinearity of
ENSO has been modulated with interdecadal time scale, and such
interdecadal change in ENSO is attributed to the interdecadal change in
the mean climate state. It is also found that the El Nino-La Nina
asymmetry reflecting the nonlinearity can be driven by the nonlinear
dynamical heat flux associated with either slowly varying dynamical
components or the tropical instability waves. Furthermore, the mean
climate state can be modified though a rectification by the nonlinear
loop of ENSO, suggesting existence of a nonlinear positive feedback
between ENSO variability and mean climate change.
2007ǯ2·î16Æü(¶â) 14:30 - 16:00
¶áËÜ ´î¸÷ (µþÅÔÂç³ØËɺҸ¦µæ½ê)
- ¹Ö±éÂêÌÜ: Ç®ÂÓµ¨ÀáÆ⿶ư¤Îͽ¬²ÄǽÀɾ²Á
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
Ãæ¹â°ÞÅÙ¤ÎÂ絤½Û´Ä¾ì¤ËÂ礤ʱƶÁ¤òÍ¿¤¨¤ë, Ç®ÂÓµ¨ÀáÆ⿶ư(MJO)¤Îͽ¬²Ä
ǽÀ¤òÌÀ¤é¤«¤Ë¤¹¤ë¤¿¤á, µ¤¾ÝÄ£1¥ö·î¥¢¥ó¥µ¥ó¥Ö¥ëͽÊó¥â¥Ç¥ë¤òÍѤ¤¤Æ, MJO
¤Îͽ¬²ÄǽÀɾ²Á¤ËŬ¤·¤¿Ç®ÂÓ°è¤Ç¤Î½é´ü¾ñÍð¤ÎºîÀ®¤ò¹Ô¤¤, ¤½¤ÎÎϳØÆÃÀ¤Ë
¤Ä¤¤¤Æ²òÀϤ·¤¿. µ¤¾ÝÄ£1¥ö·î¥¢¥ó¥µ¥ó¥Ö¥ëͽÊó¥·¥¹¥Æ¥à¤ÎÀÝÆ°°éÀ®Ë¡
(breeding method)¤ò²þÎɤ¹¤ë¤³¤È¤Ë¤è¤ê, ÀÝÆ°¥µ¥¤¥¯¥ë¤Çµ¬Äꤹ¤ëÀÝÆ°¤Î¥Î
¥ë¥à¤ÎÂ礤µ¤Ë°Í¸¤·¤¿, MJO¤È´ØÏ¢¤¹¤ë½é´üÀÝÆ°¤òÆÀ¤¿. ¥Î¥ë¥à¤ÎÂ礤µ¤¬
¶Ë¤á¤Æ¾®¤µ¤¤¾ì¹ç¤Ë¤Ï, ÂÐή¥â¡¼¥É¤È¸Æ¤Ð¤ì¤ë, ÂçÊѾ®¤µ¤¤¿åÊ¿¥¹¥±¡¼¥ë¤ò¤â
¤ÄÉÔ°ÂÄê¥â¡¼¥É¤¬Âî±Û¤¹¤ë¤³¤È¤¬³Îǧ¤µ¤ì¤¿. °ìÊý, ¥Î¥ë¥à¤ÎÂ礤µ¤òͽÊó
ÊÑ¿ô¤Îµ¤¸õ³ØŪÊÑÆ°Î̤Î10%ÄøÅ٤˵¬Äꤷ¤¿¾ì¹ç¤Ë¤Ï, ¼þ´ü20ÆüÄøÅÙ¤ÇÅì¿Ê¤¹
¤ëÅìÀ¾ÇÈ¿ô1¤Î¥â¡¼¥É¤¬Âî±Û¤¹¤ë. ¤³¤Î¥â¡¼¥É¤ÏÉÔ°ÂÄê¤Ç¤¢¤ê, Ìó7Æü¤Ç½é´ü
¤«¤é2ÇܤÎÂ礤µ¤ËÀ®Ä¹¤¹¤ëÀ®Ä¹Î¨¤ò¤â¤Ä. ¤Þ¤¿, MJO¤¬³èȯ¤Ë¤Ê¤ë¥¤¥ó¥É¥Í
¥·¥¢Îΰè¤Ç, ÀÝÆ°¤Î¿¶Éý¤¬ÁýÂ礹¤ë¤³¤È¤«¤é¤â, ¤³¤ÎÀÝÆ°¤¬MJO¤Ë´ØÏ¢¤¹¤ëÉÔ
°ÂÄê¥â¡¼¥É¤Ç¤¢¤ë¤³¤È¤ò¼¨º¶¤·¤Æ¤¤¤ë. ¤³¤ÎÉÔ°ÂÄê¥â¡¼¥É¤Ï¹ß¿å³èÆ°¤È¤Ï·ë
¹ç¤·¤Ê¤¤, dry KelvinÇȤËÎɤ¯»÷¤¿·¹°µ¹½Â¤¤ò»ý¤Ä¤³¤È¤¬³Îǧ¤µ¤ì¤¿.¤³¤Î¤è
¤¦¤ÊÎà»÷À¤Ï, MJO¤ÎÉÔ°ÂÄê¥á¥«¥Ë¥º¥à¤ÎÍý²ò¤Ë¤È¤Ã¤Æ, Ç®ÂÓ¤ÇÀ®Ä¹¤¹¤ëÀÝÆ°
¤Î²òÀϤ¬½ÅÍפǤ¢¤ë¤³¤È¤ò¼¨º¶¤·¤Æ¤¤¤ë.
2007ǯ2·î23Æü(¶â) 13:30 - 15:00
<Çî»ÎÏÀʸÃæ´Öȯɽ> ×¢ÅÄ ½íϺ (ÅìµþÂç³Øµ¤¸õ¥·¥¹¥Æ¥à¸¦µæ¥»¥ó¥¿¡¼)
- ¹Ö±éÂêÌÜ: ¥¢¥¸¥¢°è¤Ë¤ª¤±¤ë 1979-2003ǯÇß±«´ü¤Îµ¤¸õ¥È¥ì¥ó¥É·ÁÀ®¥×¥í¥»¥¹¤È¤½¤ÎÍ×°ø
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
2007ǯ3·î14Æü(¿å) 10:00 - 11:30
Åĸý ÀµÏ (°¦Ãζµ°éÂç³Ø)
- ¹Ö±éÂêÌÜ: ÂÐή·÷¡ÝÀ®ÁØ·÷µ¤¸õ¥·¥¹¥Æ¥à¤ÎÊÑÆ°¤ÈÎϳØ
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270
- Í×»Ý:
Ç®ÂÓÂÀÊ¿ÍΤÎÂ絤¡¼³¤ÍÎÊÑÆ°¡ÊüŪ¤Ë¤ÏENSO¡Ë¤Ë±Æ¶Á¤µ¤ì¤¿¡¢Åßµ¨ËÌȾµå¤ÎÂÐή
·÷¡ÝÀ®ÁØ·÷ÊÑÆ°¤Ë´Ø¤¹¤ë±é¼Ô¤é¤Î¸¦µæ·ë²Ì¤ò¾Ò²ð¤¹¤ë¡£(1)¥é¥Ë¡¼¥Ë¥ã»þ¤ËÈæ³Ó
¤·¤Æ¡¢¥¨¥ë¥Ë¡¼¥Ë¥ç»þ¤ËÀ®ÁØ·÷ÆÍÁ³¾º²¹¤¬¤è¤êÉÑÈˤËȯ¸½¤¹¤ë¤³¤È¡¢(2)À®ÁØ·÷
¥ª¥¾¥ó¸º¾¯¤ËÂФ¹¤ëÃæ¹â°ÞÅÙÂ絤¤Î±þÅú¤¬ENSO¤Î°Í¸¤Ë°Í¸¤¹¤ë²ÄǽÀ¤¬¤¢¤ë¤³
¤È¡¢¤òÏÀ¤º¤ë¡£¤Þ¤¿¡¢¤³¤ì¤é¤Î·ë²Ì¤Ë²Ã¤¨¤ÆºÇ¶á¤Î¸¦µæ¤âƧ¤Þ¤¨¡¢º£¸å¤ÎȯŸ¤Ë
¤Ä¤¤¤Æ¤â¸ÀµÚ¤¹¤ë¡£¡¡
2007ǯ3·î19Æü(·î) 13:00 - 14:30
Ignacio Pisso (CNRS - Service d'Aeronomie - Universite Pierre et Marie Curie/Paris VI )
- ¹Ö±éÂêÌÜ: Variability of turbulent diffusion in the Upper Troposphere - Lower Stratosphere
- ¾ì½ê: Áí¹ç¸¦µæÅï¡¡4¥»¥ó¥¿¡¼¶¦ÍÑ2³¬²ñµÄ¼¼ 270